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Outline

► Queuing Theory

► Characteristics of a Waiting-Line 
System

► Queuing Costs

► The Variety of Queuing Models

► Other Queuing Approaches
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Learning Objectives

When you complete this chapter you 
should be able to:

D.1 Describe the characteristics of arrivals, 
waiting lines, and service systems

D.2 Apply the single-server queuing model 
equations

D.3 Conduct a cost analysis for a waiting 
line
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When you complete this chapter you 
should be able to:

Learning Objectives

D.4 Apply the multiple-server queuing 
model formulas

D.5 Apply the constant-service-time 
model equations

D.6 Perform a finite-population model 
analysis
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Queuing Theory

▶The study of waiting lines

▶Waiting lines are common situations

▶Useful in both 
manufacturing 
and service 
areas
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Common Queuing Situations

TABLE D.1 Common Queuing Situations

SITUATION ARRIVALS IN QUEUE SERVICE PROCESS

Supermarket Grocery shoppers Checkout clerks at cash register

Highway toll booth Automobiles Collection of tolls at booth

Doctor’s office Patients Treatment by doctors and nurses

Computer system Programs to be run Computer processes jobs

Telephone company Callers Switching equipment forwards calls

Bank Customer Transactions handled by teller

Machine maintenance Broken machines Repair people fix machines

Harbor Ships and barges Dock workers load and unload
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Characteristics of Waiting-Line 

Systems

1. Arrivals or inputs to the system

▶Population size, behavior, statistical 
distribution

2. Queue discipline, or the waiting line itself

▶Limited or unlimited in length, discipline of 
people or items in it

3. The service facility

▶Design, statistical distribution of service times
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Parts of a Waiting Line

Figure D.1

Dave’s 
Car Wash

Enter Exit

Population of
dirty cars

Arrivals
from the
general

population …

Queue
(waiting line)

Service
facility

Exit the system

Arrivals to the system Exit the systemIn the system

Arrival Characteristics
► Size of the population
► Behavior of arrivals
► Statistical distribution of 

arrivals

Waiting-Line 
Characteristics

► Limited vs. 
unlimited

► Queue discipline

Service Characteristics
► Service design
► Statistical distribution of 

service
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Arrival Characteristics

1. Size of the arrival population

▶Unlimited (infinite) or limited (finite)

2. Pattern of arrivals

▶Scheduled or random, often a Poisson 
distribution

3. Behavior of arrivals

▶Wait in the queue and do not switch lines

▶No balking or reneging
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Poisson Distribution

P(x) =               for x = 0, 1, 2, 3, 4, …
e-x

x!

where P(x) = probability of x arrivals

 x = number of arrivals per unit of time

  = average arrival rate

 e = 2.7183 (which is the base of the 
natural logarithms)
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Poisson Distribution

Probability = P(x) =
e-x

x!
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Waiting-Line Characteristics

▶Limited or unlimited queue length

▶Queue discipline - first-in, first-out 
(FIFO) is most common

▶Other priority rules may be used in 
special circumstances
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Service Characteristics

1. Queuing system designs

▶Single-server system, multiple-server 
system

▶Single-phase system, multiphase 
system

2. Service time distribution

▶Constant service time

▶Random service times, usually a negative 
exponential distribution
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Queuing System Designs

Figure D.3

Departures
after service

Single-server, single-phase system

Queue

Arrivals

Single-server, multiphase system

Arrivals
Departures
after service

Phase 1 
service 
facility

Phase 2 
service 
facility

Service 
facility

Queue

A family dentist's office

A McDonald's dual-window drive-through



MD - 15Copyright © 2017 Pearson Education, Ltd.

Queuing System Designs

Figure D.3
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Queuing System Designs

Figure D.3
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Negative Exponential 

Distribution
Figure D.4
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Measuring Queue Performance

1. Average time that each customer or object spends 
in the queue

2. Average queue length

3. Average time each customer spends in the system

4. Average number of customers in the system

5. Probability that the service facility will be idle

6. Utilization factor for the system

7. Probability of a specific number of customers in the 
system



MD - 19Copyright © 2017 Pearson Education, Ltd.

Queuing Costs

Figure D.5
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Queuing Models

The four queuing models that follow all assume:

1. Poisson distribution arrivals

2. FIFO discipline

3. A single-service phase



MD - 21Copyright © 2017 Pearson Education, Ltd.

Queuing Models

TABLE D.2 Queuing Models Described in This Chapter 

MODEL NAME EXAMPLE

A Single-server 

system (M/M/1)

Information counter at 

department store

NUMBER OF 

SERVERS 

(CHANNELS)

NUMBER 

OF 

PHASES

ARRIVAL 

RATE 

PATTERN

SERVICE 

TIME 

PATTERN

POPULATION 

SIZE

QUEUE 

DISCIPLINE

Single Single Poisson Negative 

exponential 
Unlimited FIFO
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Queuing Models

TABLE D.2 Queuing Models Described in This Chapter 

MODEL NAME EXAMPLE

B Multiple-server 

(M/M/S)

Airline ticket counter 

NUMBER OF 

SERVERS 

(CHANNELS)

NUMBER 

OF 

PHASES

ARRIVAL 

RATE 

PATTERN

SERVICE 

TIME 

PATTERN

POPULATION 

SIZE

QUEUE 

DISCIPLINE

Multi-server Single Poisson Negative 

exponential 
Unlimited FIFO
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Queuing Models

TABLE D.2 Queuing Models Described in This Chapter 

MODEL NAME EXAMPLE

C Constant-service 

(M/D/1)

Automated car wash

NUMBER OF 

SERVERS 

(CHANNELS)

NUMBER 

OF 

PHASES

ARRIVAL 

RATE 

PATTERN

SERVICE 

TIME 

PATTERN

POPULATION 

SIZE

QUEUE 

DISCIPLINE

Single Single Poisson Constant Unlimited FIFO
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Queuing Models

TABLE D.2 Queuing Models Described in This Chapter 

MODEL NAME EXAMPLE

D Finite population 

(M/M/1 with finite 

source)

Shop with only a dozen 

machines that might break

NUMBER OF 

SERVERS 

(CHANNELS)

NUMBER 

OF 

PHASES

ARRIVAL 

RATE 

PATTERN

SERVICE 

TIME 

PATTERN

POPULATION 

SIZE

QUEUE 

DISCIPLINE

Single Single Poisson Negative 

exponential 
Limited FIFO
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Model A – Single-Server

1. Arrivals are served on a FIFO basis, every 
arrival waits to be served regardless of the 
length of the queue

2. Arrivals are independent of preceding 
arrivals, the average number of arrivals 
does not change over time

3. Arrivals are described by a Poisson 
probability distribution and come from an 
infinite population
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Model A – Single-Server

4. Service times vary from one customer to 
the next and are independent of one 
another, but their average rate is known

5. Service times occur according to the 
negative exponential distribution

6. The service rate is faster than the arrival 
rate
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Model A – Single-Server

TABLE D.3
Queuing Formulas for Model A: Single-Server System, 

also Called M/M/1

λ = average number of arrivals per time period

μ = average number of people or items served per time period 

(average service rate)

Ls = average number of units (customers) in the system (waiting and 

being served)

=
λ

μ – λ

Ws = average time a unit spends in the system (waiting time plus 

service time)

=
1

μ – λ
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Model A – Single-Server

TABLE D.3
Queuing Formulas for Model A: Single-Server System, 

also Called M/M/1

Lq = average number of units waiting in the queue

=
λ2

μ(μ – λ)

Wq = average time a unit spends waiting in the queue

=
λ

=
Lq

μ(μ – λ) λ

ρ = utilization factor for the system

=
λ

μ
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TABLE D.3
Queuing Formulas for Model A: Single-Server System, 

also Called M/M/1

P0 = Probability of 0 units in the system (that is, the service unit is 

idle)

= 1 –
λ

μ

Pn>k = probability of more than k units in the system, where n is the 

number of units in the system

= [ λ ]
k + 1

μ

Model A – Single-Server
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Single-Server Example

 = 2 cars arriving/hour µ = 3 cars serviced/hour

L
s
=

l

m - l
=

2

3- 2
= 2 cars in the system on average

W
s
=

1

m - l
=

1

3- 2
=1 hour average waiting time in the system

L
q

=
l2

m(m - l)
=

22

3(3- 2)
=1.33 cars waiting in line
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 = 2 cars arriving/hour µ = 3 cars serviced/hour

Single-Server Example

P0 =  1 –    =  .33 probability there are 0 cars in the 

system 

Wq =                =                 =  2/3 hour = 40 minute 

average waiting time

  =        =       =  66.6% of time mechanic is busy

 



µ(µ – )

2

3(3 – 2)



µ



µ 

2

3
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Single-Server Example

Probability of more than k Cars in the System

K Pn > k  = (2/3)k + 1

0 .667  Note that this is equal to 1 – P0 = 1 – .33

1 .444

2 .296

3 .198  Implies that there is a 19.8% chance that more 

than 3 cars are in the system

4 .132

5 .088

6 .058

7 .039
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Single-Channel Economics

Customer dissatisfaction
    and lost goodwill = $15 per hour

 Wq = 2/3 hour

 Total arrivals  = 16 per day

 Mechanic's salary = $88 per day

Total hours customers 
spend waiting per day =        (16) = 10       hours

2

3

2

3

Customer waiting-time cost   =  $15 10         = $160 per day
2

3

Total expected costs  =  $160 + $88  =  $248 per day



MD - 34Copyright © 2017 Pearson Education, Ltd.

Multiple-Server Model

TABLE D.4
Queuing Formulas for Model B: Multiple-Server System, 

also Called M/M/S 

M = number of servers (channels) open

 = average arrival rate

µ = average service rate at each server (channel)

The probability that there are zero people or units in the system is:

P
0

=
1

1

n!
n=0

M-1

å
l

m

æ

è
ç

ö

ø
÷

né

ë

ê
ê

ù

û

ú
ú
+

1

M !

l

m

æ

è
ç

ö

ø
÷

M

Mm

Mm - l

  for Mm > l



MD - 35Copyright © 2017 Pearson Education, Ltd.

Multiple-Server Model

TABLE D.4
Queuing Formulas for Model B: Multiple-Server System, 

also Called M/M/S 

The average number of people or units in the system is:

The average time a unit spends in the waiting line and being serviced 

(namely, in the system) is: 

L
S

=
lm l / m( )

M

M -1( )! Mm - l( )
2
P

0
+

l

m

W
S

=
m l / m( )

M

M -1( )! Mm - l( )
2
P

0
+

1

m
=
L
S

l
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Multiple-Server Model

TABLE D.4
Queuing Formulas for Model B: Multiple-Server System, also 
Called M/M/S 

The average number of people or units in line waiting for service is: 

The average time a person or unit spends in the queue waiting for service 

is: 

L
q

= L
S

-
l

m

W
q

=W
S

-
1

m
=
L
q

l
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Multiple-Server Example

  =  2                  µ  =  3                  M  =  2

P
0

=
1

1

n!
n=0

1

å
2

3

æ

è
ç

ö

ø
÷

né

ë

ê
ê

ù

û

ú
ú
+

1

2!

2

3

æ

è
ç

ö

ø
÷

2

2(3)

2(3) - 2

=
1

1+
2

3
+

1

2

4

9

æ

è
ç

ö

ø
÷

6

6- 2

æ

è
ç

ö

ø
÷

=
1

1+
2

3
+

1

3

=
1

2

= .5 probability of zero cars in the system
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Multiple-Server Example

L
S

=
(2)(3) 2 / 3( )

2

1( )! 2(3)-2( )
2

1

2

æ

è
ç

ö

ø
÷+

2

3
=
8 /3

16

1

2

æ

è
ç

ö

ø
÷+

2

3
=
3

4

= .75	average	number	of	cars	in	the	system

W
S

=
L
S

l
=
3/ 4

2
=
3

8
	hour

=22.5	minutes	average	time	a	car	spends	in	the	system

L
q
= L

S
-

l

m
=
3

4
-
2

3
=
9

12
-
8

12
=
1

12

= .083	average	number	of	cars	in	the	queue	(waiting)

W
q
=
L
q

l
=
.083

2
= .0415	hour

=2.5	minutes	average	time	a	car	spends	in	the	queue	(waiting)
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Multiple-Server Example

SINGLE SERVER TWO SERVERS (CHANNELS)

P0 .33 .5

Ls 2 cars .75 cars

Ws 60 minutes 22.5 minutes

Lq 1.33 cars .083 cars

Wq 40 minutes 2.5 minutes
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Waiting Line Tables
TABLE D.5 Values of Lq for M = 1-5 Servers (channels) and Selected Values of λ/μ

POISSON ARRIVALS, EXPONENTIAL SERVICE TIMES

NUMBER OF SERVICE CHANNELS, M

λ/μ 1 2 3 4 5

.10 .0111

.25 .0833 .0039

.50 .5000 .0333 .0030

.75 2.2500 .1227 .0147

.90 8.1000 .2285 .0300 .0041

1.0 .3333 .0454 .0067

1.6 2.8444 .3128 .0604 .0121

2.0 .8888 .1739 .0398

2.6 4.9322 .6581 .1609

3.0 1.5282 .3541

4.0 2.2164
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Waiting-Line Table Example

Bank tellers and customers

 = 18, µ = 20

From Table D.5 

Ratio /µ = .90 Wq =
Lq



NUMBER OF 
SERVERS M

NUMBER IN 
QUEUE TIME IN QUEUE

1 window 1 8.1 .45 hrs, 27 minutes

2 windows 2 .2285 .0127 hrs, ¾ minute

3 windows 3 .03 .0017 hrs, 6 seconds

4 windows 4 .0041 .0002 hrs, <1 second
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Constant-Service-Time Model

Average waiting time in queue:

Average number of customers in the system:

Average time in the system:

TABLE D.6
Queuing Formulas for Model C: Constant Service, also 

Called M/D/1 

Average length of queue: L
q

=
l2

2m m - l( )

W
q

=
l

2m m - l( )

L
s
= L

q
+

l

m

W
s
=W

q
+

1

m
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Net savings =  $  7 /trip

Constant-Service-Time Example

Trucks currently wait 15 minutes on average

Truck and driver cost $60 per hour

Automated compactor service rate (µ) = 12 trucks per hour

Arrival rate () = 8 per hour

Compactor costs $3 per truck

Current waiting cost per trip = (1/4 hr)($60) = $15 /trip

Wq =                          =          hour
8

2(12)(12 – 8)

1

12

Waiting cost/trip
with compactor

=  (1/12 hr wait)($60/hr cost)  =  $  5 /trip

Savings with
new equipment

=  $15 (current) – $5(new) =  $10 /trip

Cost of new equipment amortized =  $  3 /trip
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Little's Law

► A queuing system in steady state

Ls = Ws (which is the same as Ws = Ls/)

Lq = Wq (which is the same as Wq = Lq/)

► Once two of the parameters is known, the other 
can be easily found

► It makes no assumptions about the probability 
distribution of arrival and service times

► Applies to all queuing models except the finite 
population model
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Little's Law Example

 = 20 per hour Lq = 5

Wq = Lq/

  = 5/20 = 0.25 hours

(0.25 hours)(60 min/hour) = 15 minutes
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Finite-Population Model

▶Assumptions

1. There is only one server

2. The population of units seeking service is 
finite

3. Arrivals follow a Poisson distribution, service 
times are negative exponentially distributed

4. Customers are served on a first-come, first-
served basis
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Finite-Population Model

TABLE D.7
Queuing Formulas and Notation for Model D: Finite-Population, also 

called M/M/1 with Finite Source

 = average arrival rate

m = average service rate

N = size of population

Probability that the system is empty:

P
0

=
1

N !

N – n( )!
l

m

æ

è
ç

ö

ø
÷

n

n=0

N

å

Average waiting time in the queue:

W
q

=
L
q

(N – L
s
)l

Average time in the system:

W
s
=W

q
+
1

m
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Finite-Population Model

TABLE D.7
Queuing Formulas and Notation for Model D: Finite-Population, also 

called M/M/1 with Finite Source

Average length of the queue:

Average number of customers (units) 

in the system:

L
s
= L

q
+ (1 – P

0
)

Probability of n units in the system:

P
n

=
N !

(N – n)!

l

m

æ

è
ç

ö

ø
÷

n

P
0
		for	n	=	0,	1,	...	,	NL

q
= N –

l +m

l

æ

è
ç

ö

ø
÷(1 – P

0
)
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Finite-Population Example

Laser printer breakdown analysis

 = 1/20 = 0.05 printers/hour m = ½ = 0.50 printers/hour

1. P
0

=
1

5!

5 – n( )!
0.05

0.5

æ

è
ç

ö

ø
÷

n

n=0

5

å

= 0.564

2. L
q

= 5 –
0.05+0.5

0.05

æ

è
ç

ö

ø
÷(1 – P

0
) = 5 – (11)(1 – 0.564) = 5 – 4.8 = 0.2	printers
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Finite-Population Example

Laser printer breakdown analysis

 = 1/20 = 0.05 printers/hour m = ½ = 0.50 printers/hour

3. L
s
= 0.2+ 1 – 0.564( ) = 0.64	printers

4. W
q

=
0.2

(5 – 0.64)(0.05)
=

0.2

0.22
= 0.91	hours

5. W
s
= 0.91+

1

0.50
= 2.91	hours
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Finite-Population Example

Laser printer breakdown analysis

 = 1/20 = 0.05 printers/hour m = ½ = 0.50 printers/hour

3. L
s
= 0.2+ 1 – 0.564( ) = 0.64	printers

4. W
q

=
0.2

(5 – 0.64)(0.05)
=

0.2

0.22
= 0.91	hours

5. W
s
= 0.91+

1

0.50
= 2.91	hours

Total 

hourly 

cost

(Average number of printers 

down)(Cost per downtime hour) 

+ Cost per technician hour

=

=  (0.64)($120) + $25 

=  $76.80 + $25.00 

=  $101.80
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Other Queuing Approaches

▶The single-phase models cover many 
queuing situations

▶Variations of the four single-phase 
systems are possible

▶Multiphase models 
exist for more 
complex situations
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