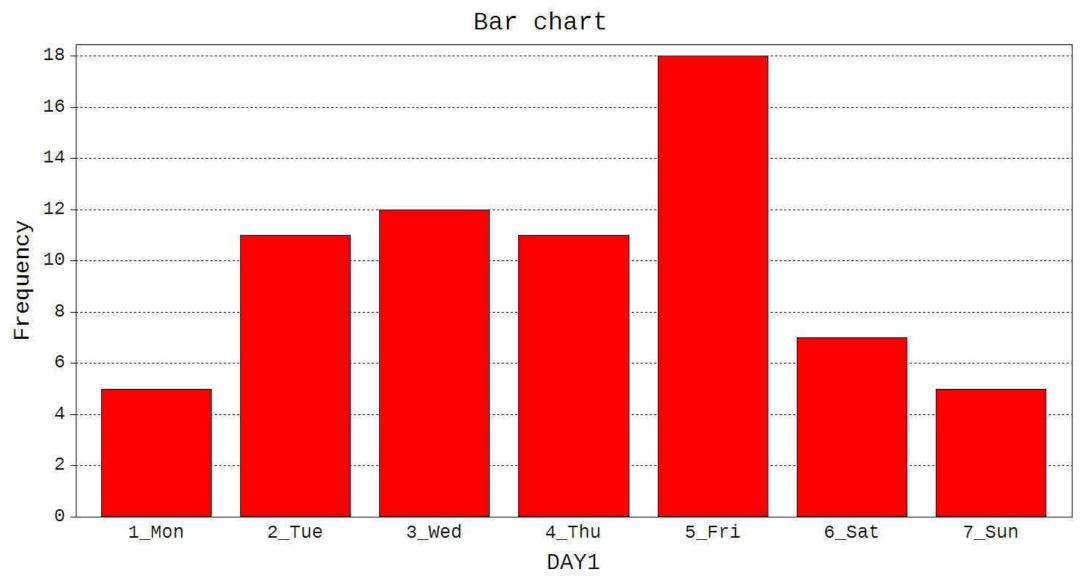


F Sa W M Tu F Th M Tu F Tu F Su W Th F Th W Th Sa W W F E Tu Su Tu Th W Sa Tu Th F W F F Su F Th Fu F Tu Tu Sa W W Sa F Sa Th W F Th F M MF Su W Th M Tu Sa TK F Su W

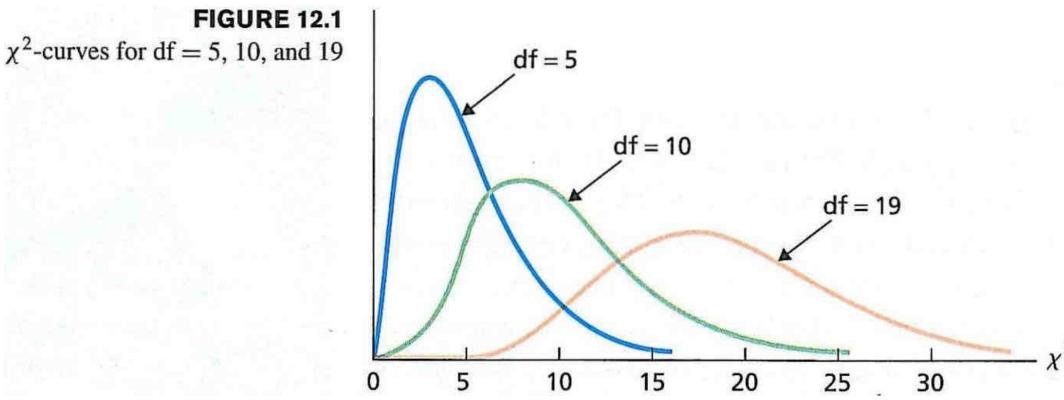
JHH 111 Tu HHHH 12 11 WTh HH HH III 18 F 5a HH 11 7 SU IHT



 $E: 69/\eta = 9.857$

 $\chi^2 = 13.073$ df= 6 p=0,04189

CASE	OBS	EXP	OBS_EXP	CHI2
1	5	9.857	2.3932686	13.072653
2	11	9.857	0.1325402	M
3	12	9.857	0.4659074	M
4	11	9.857	0.1325402	M
5	18	9.857	6.7270416	M
6	7	9.857	0.8280865	M
7	5	9.857	2.3932686	M



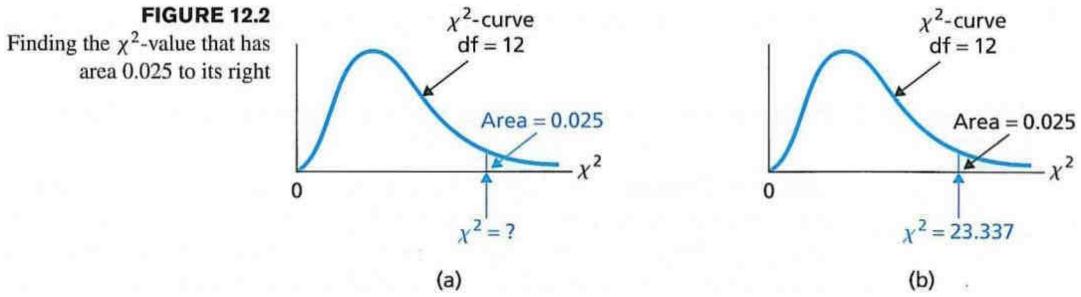
Basic Properties of χ²-Curves

Property 1: The total area under a χ^2 -curve equals 1.

Property 2: A χ^2 -curve starts at 0 on the horizontal axis and extends indefinitely to the right, approaching, but never touching, the horizontal axis.

Property 3: A χ^2 -curve is right skewed.

Property 4: As the number of degrees of freedom becomes larger, χ^2 -curves look increasingly like normal curves.



Distribution of the χ²-Statistic for a Chi-Square Goodness-of-Fit Test

For a chi-square goodness-of-fit test, the test statistic

$$\chi^2 = \Sigma (O - E)^2 / E$$

has approximately a chi-square distribution if the null hypothesis is true. The number of degrees of freedom is 1 less than the number of possible values for the variable under consideration.

The Chi-Square Goodness-of-Fit Test (Critical-Value Approach)

Assumptions

- 1. All expected frequencies are 1 or greater.
- 2. At most 20% of the expected frequencies are less than 5.

Step 1 The null and alternative hypotheses are

 H_0 : The variable under consideration has the specified distribution.

H_a: The variable under consideration does not have the specified distribution.

Step 2 Calculate the expected frequency for each possible value of the variable under consideration by using the formula E = np, where n is the sample size and p is the relative frequency (or probability) given for the value in the null hypothesis. **Step 3** Determine whether the expected frequencies satisfy Assumptions 1 and 2. If they do not, this procedure should not

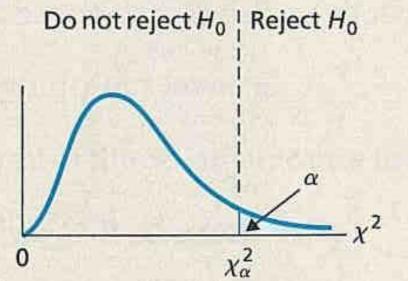
be used.

Step 5 Compute the value of the test statistic $\chi^2 = \Sigma (O - E)^2 / E,$

Step 4 Decide on the significance level, α .

where O and E denote observed and expected frequencies, respectively.

Step 6 The critical value is χ^2_{α} with df = k - 1, where k is the number of possible values for the variable under consideration. Use Table V to find the critical value.



Step 7 If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .

Step 8 Interpret the results of the hypothesis test.

The Chi-Square Goodness-of-Fit Test (P-Value Approach)

Assumptions

- All expected frequencies are 1 or greater.
 At most 20% of the expected frequencies are less than 5.
- Step 1 The null and alternative hypotheses are
- H_0 : The variable under consideration has the specified distribution.
- H_a: The variable under consideration does not have the specified distribution.

Step 2 Calculate the expected frequency for each possible value of the variable under consideration by using the formula E = np, where n is the sample size and p is the relative frequency (or probability) given for the value in the null hypothesis. **Step 3** Determine whether the expected frequencies satisfy Assumptions 1 and 2. If they do not, this procedure should not

be used.

Step 4 Decide on the significance level, α. Step 5 Compute the value of the test statistic

 $\chi^2 = \Sigma (O - E)^2 / E$ and denote it χ_0^2 . Here O and E denote observed and expected frequencies, respectively.

possible values for the variable under consideration. Use Table V to estimate the *P*-value, or obtain it exactly by using technology.

Step 6 The χ^2 -statistic has df = k-1, where k is the number of

Step 7 If
$$P \le \alpha$$
, reject H_0 ; otherwise, do not reject H_0 .

Step 8 Interpret the results of the hypothesis test.