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Accurate forecasts of natural gas demand can be essential for utilities, energy traders, regulatory au-
thorities, decision makers and others. The aim of this paper is to test the robustness of a novel hybrid
computational intelligence model in day-ahead natural gas demand predictions. The proposed model
combines the Wavelet Transform (WT), Genetic Algorithm (GA), Adaptive Neuro-Fuzzy Inference System
(ANFIS) and Feed-Forward Neural Network (FFNN). The WT is used to decompose the original signal in a
set of subseries and then a GA optimized ANFIS is employed to provide the forecast for each subseries.
ANFIS output is fed into a FFNN to refine the initial forecast and upgrade the overall forecasting accuracy.
The model is applied to all distribution points that compose the natural gas grid of a country, in
contradiction to the majority of the literature that focuses on a limited number of distribution points.
This approach enables the comparison of the model performance on different consumption patterns,
providing also insights on the characteristics of large urban centers, small towns, industrial areas, power
generation units, public transport filling stations and others.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Robust forecasting is the fundamental process that the energy
system planning is based on [1]. Predictions of key variables like
energy demand, market prices, fuel reservoirs are crucial in the
design, implementation and evaluation phases of different energy
projects. Especially, electricity demand forecasting has held an
important role in the power systems community in terms of pub-
lished researches, pilot programs and practical applications [2]. The
literature on forecasting of other variables like natural gas demand
is more limited [3]. This is mainly due to the fact that the utilization
of natural gas in power generation was rather limited during the
last decades. However, the deregulation of energy markets and the
low capital cost of natural gas units, compared to coal plants, have
created opportunities for market players, leading to numerous in-
vestments on natural gas projects [4]. The increasing environ-
mental awareness as well as the importance of energy security have
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facilitated this trend together with the penetration of renewable
energy resources [5]. Other common usages of natural gas are
public transportation, manufacturing and residential heating.
Hence, natural gas demand is an important carrier in the energy
mix and its accurate forecasting is of fundamental importance in
many applications.

The respective literature on natural gas demand forecasting can
be categorized based on the various criteria such as forecasting
horizon, type of tools, covered area and others [3]. Actually the
forecasting area defines the types of inputs involved and model
used. Our study belongs to the sub-categories of daily forecasting
and per distribution level. In Ref. [6] a comparison between various
Artificial Neural Networks (ANNs) takes place in order to derive the
most effective topology for the natural gas demand prognosis of a
city in Poland. Two different types of ANN are used for day-ahead
forecasts in a providence of Turkey [7]. The inputs do not
consider historical natural gas values but only external variables.
Authors of [8] propose a combined model consisted of 2 ANN. To
test the models robustness, they provide a comparison between
various approaches, including ANN, in order to determine the
appropriate model. The target set corresponds to the data provided
by 8 natural gas distribution providers. In Ref. [9] the area of
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application is Ankara, Turkey. The inputs that the ANN uses are gas
prices, population, selling prices, degree-day and exchange rate. A
recurrent neural network is used in Ref. [10] as a gating model of an
existing one that is used by a gas utility. Authors of [11,12] are
concerned with daily and weekly forecasting. A statistical analysis
is conducted to determine which factors are appropriate to serve as
input variables. For each forecasting horizon, they compare 7
different ANN topologies that differ in terms of the training func-
tion used. In Ref. [13] the proposed model uses 3 ANN working in
parallel to provide separate forecasts. Then these forecasts are
combined to obtain the final one. Various parameters are used as
inputs like calendar information, temperature and historical gas
consumption values. The data are obtained from 4 gas distribution
companies. Authors of [14] deal with 2 regions in Poland and
examine 3 horizons, namely day-ahead, week-ahead and four-
week ahead. A comparison takes place between a FFNN and a
fuzzy neural network. Also, they test some regression models. In all
forecasting horizons, the FFNN outperforms all the rest. In Ref. [15]
the GA is incorporated in order to define the optimal number of
layers, the weights and bias of an ANN. The proposed model pre-
dicts daily gas consumption as a function of degree-day, relative
humidity, rainfall, and wind speed and is applied on a city in Iran. In
Ref. [16] the GA is used to produce the optimal weights and
threshold values. The proposed model is tested with several others
on the data corresponding to a city in China. Day-ahead forecasting
of the consumers demand of a local distribution company in Croatia
is the subject of [ 17]. There are several linear and non-linear models
that are used for the aforementioned purpose. Among them, the
authors include a recursive neural network and a FFNN. The com-
parison denotes the recursive linear autoregressive model with
exogenous inputs as the optimal tool for the data under study. In
Ref. [18] the Multilayer Perceptron (MLP) is compared with ANFIS.
The latter leads to better predictions in the 2 examined cases. These
differ in terms of the number and types of inputs used for both
models. The authors also present, according to a literature survey,
the advantages of ANFIS over traditional models. In Ref. [19] the
authors deal with national wide forecasting of 6 countries of South
America. The inputs include the population and the gross domestic
product of the country and the output refer to the total annual gas
demand of the country.

Based on the above brief literature survey, it is obvious that the
natural gas demand forecasting problem has been tackled by many
approaches involving sole and hybrid forecasting systems and al-
gorithms for advancements in neural network training. Contrary to
the majority of the literature that focuses on a limited number of
distribution points, the paper aims as developing a generic meth-
odology that is applied to all distribution points that compose the
natural gas grid of a country. This approach enables the comparison
of its performance on different consumption patterns, providing
also insights on the characteristics of large urban centers, small
towns, industrial areas, power generation units, public transport
filling stations and others.

The consideration of the whole distribution points of a national
system, lead to a large variety of demand patterns both in shapes
and magnitude, in order to capture geographical differences and
different types of consumers. This inherent attribution of the nat-
ural gas demand pattern of the country leads to difficulties in
modeling and prediction of future demand trends. Thus, a potential
forecasting system should be able to capture and simulate the non-
linear behavior of the natural gas demand with regard to the pa-
rameters that influence it. A promising category of tools belong to
the general technical field of computational intelligence. ANN
based models have found numerous applications in a variety of
engineering tasks and are a favorable tool in forecasting problems
[20]. The paper develops a robust natural gas demand forecasting

model, combining the Wavelet Transform (WT), Genetic Algorithm
(GA), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Feed-
Forward Neural Network (FFNN) approaches. The WT is used to
decompose the original signal in a set of subseries and then a GA
optimized ANFIS is employed to provide the forecast for each
subseries. ANFIS output is fed into a FFNN to refine the initial
forecast and upgrade the overall forecasting accuracy. The model is
used for the day ahead natural gas demand forecasting of Greece.

The objectives of the present paper can be summarized in the
following:

a) The paper aims at providing forecasts for all distribution points
that consist the national natural gas grid of a whole country. To
the best of the authors, knowledge, this is the first study that
examines all the distribution points corresponding to the largest
amount of data in the respective literature.

b) A novel hybrid forecasting model is proposed. We combine an
ANFIS with a FFNN to construct a cascaded model that leads to
high accuracy in most distribution points. The proposed model
is characterized by high flexibility, comprehensive operation
and low execution time requirements.

Our paper serves as an initial study focusing on the national gas
distribution system of a country by examining the consumptions
pattern per distribution point. The findings of this work can be used
by distribution operators or other utilities to upgrade their opera-
tional long-term planning and validate their decision making pro-
cedure when dealing with emergencies, unit constructions, gas
network expansion and other issues.

2. Natural gas demand forecasting framework

The paper investigates the consumption patterns of all distri-
bution points that compose the national natural gas system of
Greece [21]. Totally there are 44 distribution points, from which 4
are not considered due to zero or extremely low consumption,
reducing the number of points under investigation to 40. The dis-
tribution points are spread over the Greek territory, covering
different types of loads. In our study, a novel computational intel-
ligence model is constructed and tested separately on the distri-
bution points of the Greek system. The available data set
corresponds to aggregated daily consumption and concerns the
period 01/01/2014-30/06/2016. The data set is split to training and
test sets. The training set corresponds to the period 01/01/2014-31/
12/2015 and is employed so that to define the optimal model's
parameters. The test set covers the period 01/01/2016-30/06/2016
and is used for the overall assessment of the trained model. We are
concerned with day-ahead prediction, i.e. the purpose is to esti-
mate next day's demand of each distribution point using historical
natural gas consumption and other influential variables.

2.1. Data description

Fig. 1 displays the National Natural Gas (NNGTS) Transmission
System of Greece. The NNGTS transports gas from the Greek-
Bulgarian Border and Greek-Turkish border in continental Greece.
The main transmission pipeline with total length equals to 512 km
and design pressure 70 barg extends from the Greek-Bulgarian
border at Promachonas to Attica. Transmission branches with to-
tal length 947 km extend from the main transmission pipeline and
supply natural gas to the regions of Eastern Macedonia, Thrace,
Thessaloniki, Platy, Volos, Trikala, Oinofyta, Antikyra, Aliveri, Kor-
inthos, Megalopoli, Thisvi and Attica. The data used in this study
were provided by The National Natural Gas System Operator
(DESFA) S.A. The purpose of the company is the operation,
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Fig. 1. National natural gas transmission system [21].

management, exploitation and development of the NNGTS in order
to cover the needs of the consumers in a safe, reliable and
economically efficient way. The available data refer to large urban
areas, towns, industrial areas and other special consumers [21]. The
number of data points is 40 and can be categorized in the following
types of consumers:

e Large cities: Athens, Alexandroupolis, Volos, Thessaloniki,
Katerini, Komotini, Lamia, Larissa, Xanthi, Serres, Trikala.

e Towns: Agia Triada, Sidirokastro, Kipi, Agioi Theodoroi, Drama,
Thriasio, Karditsa, Kilkis, Kokkina, Spata, Oinofyta, Platy.

e Industrial areas: ELPE, VIPE Larissa, VFL, Motor Oil, Motor Oil II.
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e Power generation units: Alouminion, Alouminion II, Alouminion
III Aliveri (PPC), Komotini (PPC), Lavrio (PPC), Energeiaki Thess.
(ELPE), Heron II, Heronas, Thisvi.

e Public transport supplementation stations: SALFA Anthousa,
SALFA Ano Liossia.

As an initial exploration of the data, a correlation analysis takes
place. The distribution point of Athens serves as the basis of the
analysis. Fig. 2 shows the correlation between the time series of
Athens with respect to the rest. The time series refer to the training
period. With the correlation analysis we check the degree of sim-
ilarity between the time series shapes between the distribution
points. The higher correlations to Athens have the points of Alex-
androupolis, Volos, Thessaloniki, Karditsa, Larisa, Serres and Tri-
kala. It can be concluded that most city center present similar
consumption patterns. Aloumimion and Heronas display the lowest
similarities. This points refer to privately owned natural gas fired
generation units.

2.2. Wavelet transform

In many forecasting problems, prior to entering the data into the
model for training and test, a pre-processing phase takes place. The
presence of atypical data such as outliers, extremely low values and
others influence the prediction accuracy. However, in real-time
applications, for instance in electricity grid operators the fore-
casting refers to out-of-sample data. This means that the test data
are not available and no pre-processing is applicable. In our study
no pre-processing took place since there were no mission values. In
many points the consumption of some day was zero. This fact, as it
will be denoted in a following Section, influences the forecasting
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W(a,b) = % 70 f(x)@(’%b) dx 1)

where the scale parameter a controls the spread of the wavelet and
the translation factor b determines its central position. The wavelet
representation of f(x) with respect to the mother wavelet ¢(x) re-
fers to the set of all wavelet coefficients W(a,b). The CWT is
accomplished by continuously scaling and translating the mother
wavelet. But this concept may lead to increased redundant infor-
mation. An alternate to this, is to consider certain scale, an
approach known as DWT. In the DWT, each coefficient W(m,n) is
expressed as:

wmmnf@)iﬁm¢6%§ﬁ) 2)
t=0

where T is the length of the signal f(t) and ¢ is the discrete time
index. A fast DWT has been proposed in Ref. [23]. It consists of 4
filters: decomposition low-pass, decomposition high-pass, recon-
struction low-pass, and reconstruction high-pass filters. This
approach leads to approximation (which is the low-frequency
representation) and details (the difference between the high-
frequency representations) of the original series. The original

Original time series

accuracy. We conducted a preliminary analysis of the data and Al D1
found that in many cases showed volatilities and trends. To over-
come this fact, the WT is applied to split up the original gas con-
sumption series into one low-frequency and some high-frequency
subseries in the wavelet domain [22]. These subseries present a A2 D2
better behavior compared to the original signal and thus their
forecast will lead to lower error. The WT provides a filter to the
original series.
Generally, WTs are distinguished in Continuous Wavelet
Transform (CWT) and Discrete Wavelet Transform (DWT). Let f(x) A3 D3
and &(x) be the original series and a mother wavelet, respectively.
The CWT W(a, b) of f(x) is expressed as: Fig. 3. Multi-level decomposition process.
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Fig. 2. Correlation coefficient values between Athens the other distribution points under study.
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series is split by successive decompositions into lower resolution
components. The process is depicted in Fig. 3. The original series is
the sum of the low-frequency component A3 and the high-
frequency components D1, D2, D3, i.e. f = A3+ D1+ D2+ D3. In
our study, the wavelet function of type Daubencies of order 4 serves
as the mother wavelet @(t).

As illustrative examples of the WT, Figs. 4 and 5 show the
original series and the low- and high-frequency components of
Athens and ELPE, respectively. The wavelet components have the
same length with the original series. The component A3 is an
approximation of the original signal.

2.3. GA/ANFIS/FFNN approach

A crucial study on the overall success of a forecasting task is the
proper selection of the number and types of inputs. The historical
values of the parameter under study are input candidates. In order
to explore the natural gas consumption series periodicity, the
Pearson correlation coefficient is used to measure the degree of
dependence between current values and values up to 30 days
before [24]. The correlation analysis is held for each wavelet
component separately. The results for the series of Athens are
presented in Fig. 6. In order to form a reduced set of inputs for the
purpose of faster training, only the first two most correlated
values are selected: for component D1 the selected days are 3 and
4, for component D2 the selected days are 1 and 7 and both for
component D3 and A3, the selected days are 1 and 2. All the other
inputs have been chosen via trial and error. A series of different
models were examined in order to reach safe conclusions about
the inputs sets that need to be considered for the current data set.
According to the experimental outputs, the mean daily tempera-
ture is also selected. The temperature data are obtained by the
nearest to the distribution gas point station. Finally, calendar

indicators are considered. Specifically, we use 1 input for months
and days coding, respectively. Let k = 1,2,...,12 be the number of
months. We considered the following matching: January—1,
February—2,...,.December —12. Let | = 1,2,..,7 be the number of
days. The day type matching is the following: Monday— 1,
Tuesday— 2,...,Sunday — 7.

A schematic representation of the proposed hybrid model is
depicted in Fig. 7. The original gas consumption series are decom-
posed into the wavelet components. From the correlation analysis,
the first two most correlated values are selected. Also, the external
variables (mean daily temperature and calendar indicators) are
used to form the input pattern of the ANFIS. The output refers to the
total daily demand of the specific distribution point. The GA is
employed to optimize the parameters of ANFIS. The output of ANFIS
with the same external variables are led to the input layer of the
FFNN in order to refine the initial forecast. The 4 ANFIS/GA/FFNN
models are run in parallel. In the last layer of the model, the inverse
WT takes place and in order to obtain the predicted gas series. Fig. 8
shows the general structures of FFNN and ANFIS that are combined
to formulate the forecasting engine. The FFNN is trained by the
Levenberg-Marquardt algorithm [25]. FFNNs are built with infor-
mation processing units, i.e. the neurons. The neuron is composed
by a set of synapses and a summation junction fired by an activation
function. The neuron is fed with a set of discrete signals that are
modified by the weights of the synapsed. The role of the junction is
to sum all the modified signals. It generates an output based on the
form of the activation function of the neurons. For full mathemat-
ical description, the reader is referred to [26].

ANFIS is composed by 5 layers and each layer contains several
nodes [27]. The nodes are described by a node function. Let O{ be
the output of the ith node in layer j. In the 1st layer, every node I is
an adaptive node with node function:
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Fig. 4. Original series and wavelet components of the training period of Athens.
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Fig. 5. Original series and wavelet components of the training period of ELPE.
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0l = pAi(x), i=1.2 (3)

or

O} = uB; »(y). i=3.4 (4)

where x or y is the input of the ith node and A; or B;_, is a linguistic
label associated with the node. Hence, q is the membership grade

of a fuzzy set A1, A,, B or B, and it specifies the degree to which the
input x or y satisfies the quantifier A or B. Any continuous and
piecewise differential function can be used for node functions in
the 1st layer. In the 2nd layer, each node IT multiplies the inputs
and sends the product in output:

Of = w; = pA(uBi(y), i=1,2 )

In the 3rd layer, each node N computes the following ratio:
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Fig. 7. Schematic representation of the proposed model.
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In the 4th layer, each node computes the contribution of the ith
rule to the overall output:
0} =wiz; = Wi(aix + by +¢), i=1,2 (7)
where w; is the output of the third layer and q;, b;, c are a set of
parameters.

Finally, in the 5th layer, the node = computes the final output as
the summation of all inputs:

07 => Wz (8)
i
GA is well-known evolutionary optimization technique with
numerous applications. In this study is used to define ANFIS pa-
rameters. More specifically, the operational steps of the proposed
model can be summarized in the following:
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1) Determination of the ANFIS structure. In this step, the inference
mechanism is defined, i.e. whether we will consider Sugeno-
type or Mamdani-type fuzzy inference system. Also, the type
of membership function is decided, i.e. whether we will use
Triangular-shaped, Trapezoidal-shaped, Gaussian or others.
Other parameters are number of training epochs, error function
threshold between subsequent epochs and others.

2) Determination of the GA parameters such as maximum itera-
tion, population size, mutation probability, crossover probabil-
ity, mutation rate and others.

3) Formulation of the GA's fitness function. The optimization
problem has the following decision variables: number of
membership functions and values of g;, b;, c.

4) Prediction of the WT component via the optimized ANFIS
structure.

5) Determination of the FFNN parameters such as number of
training epochs, number of hidden layers, number of neurons in
the hidden layer, type of activation function and others.

Original time series

Application of the wavelet transform

|

Select type of membership function
and set initial parameters

|

6) Prediction of the WT component and inverse WT to obtain the
final series.

Fig. 9 shows the flow-chart of the function of the hybrid model.
The optimal FFNN parameters are determined via trial and error set
of simulation. If the forecasting error is not acceptable, the GA
parameters can be altered and run the optimization procedure
again. Also, the FFNN parameters can be changed accordingly.

3. Simulation results
3.1. Evaluation framework

The evaluation framework consists of a set of mathematical
criteria that measure the forecasting errors. A relatively large of
validity indicators supports the justification of a models usage. Let
P2, and Pf, are the real and predicted natural gas demand of the m-
th day of the test set, m = 1,2,...,M and M = 182, respectively. The

Initial ANFIS

GA Set parameters of GA

|

Optimal parameters of the
membership functions

|

Final ANFIS

|

Wavelet coefficient

FFNN

|

‘Wavelet coefficient

Application of the inverse
wavelet transform

l

Predicted time series

End

Fig. 9. Flow-chart of the operation of the proposed model.
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Absolute Error (AE) is defined as:

M
AE:Z

m=1

P, — Ph| (9)

The Mean Absolute Error (MAE) corresponds to the sum all AEs:

(10)

] M
MAE = o > |Ps, — Ph|
m=1

The Mean Absolute Percentage Error (MAPE) is a common in-
dicator in forecasting problems and it is given by:

f
1 M Pfan_Pm‘
MAPE:M; P x 100 (11)

Another common indicator is the Root Mean Squared Error
(RMSE), which is expressed as:

RMSE = (12)

M

z (77

The Mean Absolute Range Normalized Error (MARNE) is the
absolute difference between the real and forecast natural gas de-
mand, normalized to the maximum gas demand [28]:

-
m

P'fn‘ x 100

max (Pg,) (13)

1 M
MARNE = v m;

In order to validate the proposed model, a comparison will take
place with a model without the FFNN part, i.e. hybrid model
composed by ANFIS/GA. All the above indicators have been calcu-
lated using the test data.

Table 1
Error measures per distribution point generated by the ANFIS/GA model.
MAE MAPE RMSE MARNE MAE MAPE RMSE MARNE
Agia Triada 1366.92 >100 1802.52 7.35 Thessaloniki 214744 16.20 21962.28 8.67
Sidirokastro 78639.56 >100 150227 64.90 Thisvi 9841.79 >100 45526.76 56.90
Kipi 2313.51 14.81 14549.22 8.97 Thriasio 28.18 8.64 37.79 5.12
Agioi Theodoroi 45.12 >100 145.51 20.23 Karditsa 200.55 31.99 234731 20.05
Alouminion 479.04 5.58 1830.22 4.40 Katerini 10.77 4.16 16.90 3.33
Alouminion II 2189.79 36.46 7713.85 13.08 Kilkis 65.21 13.39 81.21 4.75
Alouminion III 73.33 3.64 115.70 235 Kokkina 10.69 >100 38.20 8.32
Athens 750.32 7.59 1989.08 2.56 Komotini 10410.11 >100 42959.69 47.42
Alexandroupolis 10.25 8.47 61.52 5.18 Lamia 155.56 >100 676.43 64.41
VIPE Larissa 15.65 14.70 20.19 7.48 Larissa 142.33 8.69 327.15 2.50
Volos 218.52 11.54 494.50 415 Spata 89.84 27.22 612.00 18.35
VFL 367.97 >100 1078.93 7.48 Motor Oil 315.78 >100 596.92 425
Aliveri (PPC) 2287.06 >100 8354.39 12.30 Motor Oil II 11965.78 >100 40328.37 64.00
Komotini (PPC) 220444 >100 5122.09 13.88 Xanthi 16.82 17.69 22.85 4.90
Lavrio (PPC) 1523.51 >100 2147.52 5.92 Oinofyta 199.49 8.43 427.04 5.46
Drama 26.85 3.41 61.77 2.17 Platy 20.07 7.52 43.83 4.57
ELPE 135.30 82.37 411.36 6.23 SALFA Anthousa 54.45 28.68 208.67 17.67
Energeiaki Thess. (ELPE) 2585.53 >100 12049.59 14.80 SALFA 25.14 31.27 45.54 6.58
Ano Liossia

Heron II 1831.61 >100 4061.27 13.38 Serres 39.61 8.23 214.95 3.46
Heronas 80.81 >100 341.20 7.97 Trikala 9841.79 >100 45536.76 56.90

Table 2

Error measures per distribution point generated by the ANFIS/GA/FFNN model.

MAE MAPE RMSE MARNE MAE MAPE RMSE MARNE
Agia Triada 1285.07 >100 1763.83 6.91 Thessaloniki 585.49 7.67 1534.56 2.36
Sidirokastro 7173.08 12.97 13558.93 5.92 Thisvi 1550.32 >100 2195.03 8.96
Kipi 1147.02 9.69 213497 445 Thriasio 28.67 8.67 37.63 5.21
Agioi Theodoroi 21.17 >100 33.59 9.49 Karditsa 21.29 11.47 97.04 3.13
Alouminion 318.05 3.63 599.69 2.92 Katerini 9.89 3.64 15.00 3.05
Alouminion II 1449.16 28.18 2106.12 8.65 Kilkis 60.18 11.63 76.83 438
Alouminion III 72.19 3.58 114.76 2.32 Kokkina 10.29 >100 24.76 8.01
Athens 667.51 6.60 1802.53 2.28 Komotini 1618.33 >100 2943.51 7.37
Alexandroupolis 5.11 4.86 12.48 2.58 Lamia 16.55 2233 21.00 6.85
VIPE Larissa 14.55 14.87 18.59 6.96 Larissa 132.77 8.17 242.68 233
Volos 161.47 9.42 287.30 3.06 Spata 16.91 7.60 2442 3.45
VFL 310.10 >100 768.50 6.30 Motor Oil 314.17 >100 632.22 4.23
Aliveri (PPC) 143548 >100 2420.67 7.72 Motor Oil I 2265.99 >100 3132.46 12.12
Komotini (PPC) 1909.63 >100 3457.55 8.69 Xanthi 16.49 16.60 2147 4.81
Lavrio (PPC) 1595.21 >100 2261.37 6.20 Oinofyta 166.34 8.05 214.15 4.55
Drama 23.07 3.01 37.96 1.87 Platy 22.58 9.32 38.69 5.14
ELPE 92.41 53.96 179.70 4.26 SALFA Anthousa 14.63 1243 20.99 4.74
Energeiaki Thess. (ELPE) 1801.63 >100 2513.27 10.31 SALFA 18.73 23.17 27.10 4.90
Ano Liossia

Heron II 1642.25 >100 2328.45 12.00 Serres 23.89 5.89 77.21 2.08
Heronas 104.36 >100 429.61 10.30 Trikala 33.79 13.67 79.10 3.92
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Fig. 10. Real and predicted series (original and WT components) of Athens.
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3.2. Comparison of the models

For both models, the basic GA parameters were set to:
maximum iteration — 800, population size — 25, mutation proba-
bility — 70%, crossover probability —40% and mutation rate— 15%.
The basic FFNN parameters were set to: number of hidden
layers — 1, activation function in the hidden layer— tangent sig-
moid, activation function in the output layer— tangent sigmoid
and maximum number of epochs— 500. The FFNN was executed
for variable number of neurons in the hidden layer and more spe-
cifically, from to 2 to 30 with an increasing step equals to 2. In most
cases, the lowest error was met in different number of neurons for
every distribution point. Also other configurations were tested (i.e.
using 2 hidden layers and other activation functions) but they were
rejected due to their poor forecasting efficiency.

When dealing with large data sets, a working practice should be
followed to systemize the whole forecasting procedure. This prac-
tice is built on three phases. The first one is the “pro-forecasting”
phase and refers to an initial statistical analysis of the data to study
descriptive statistics, trends and others. The atypical data should be
tracked and if necessary, removed from the data set. The analyst
should consult the data provider for potential special attributes of
the data and/or elaborate data mining processes. The second phase
is the “main-forecasting” phase. The analyst should choose to
construct a special model according to the needs or reproduce a
model proposed in the literature. Most codes are available from
commercial software packages, which have user friendly environ-
ment and are easily executed in common computer systems. The
last phase is the “meta-forecasting” phase. Here the analyst should
seek the expert's (i.e. utility, grid operator, etc.) feedback. If
expertise knowledge is available, it should be used accordingly. The

experimental outcomes should be presented to the expert for
further insights and recommendations.

Tables 1 and 2 register the error metrics per distribution point
considering the ANFIS/GA and the ANFIS/GA/FFNN models,
respectively. It can be concluded that there is a large diversity of
errors among the distribution points. In all cases the proposed
model lead to lower errors, a fact that denotes its robustness and
exploitability considering different data sets. The models perfor-
mances are close to each other in the cases of Agia Triada, Alou-
minion III, Athens, VIPE Larissa, Thriasio, Katerini, Kilkis, Kokkina,
Larisa, Motor Oil, and Xanthi. These points cover all the types that
are mentioned in Section 2.1. The proposed model has more evident
superior performance compared to ANFIS/GA in small towns like
Agioi Theodoroi, Thirsvi and others. Generally, city centers corre-
spond to the lowest errors followed by the towns. Among the
generation units, the privately owned units Alouminion, Aloumio-
nin Il and Alouminion Il have more stable demand patterns. All the
Public Power Corporation S.A. (PPC S.A.) stations have less pre-
dictable patterns. The natural gas demand at the power generation
is linked to the dynamics of the wholesale electricity market.
Therefore, a more robust forecast of natural gas demand in power
generation should elaborate more specific approaches, such as the
unit commitment and the power systems expansion planning
problems [29,30]. According to Table 2, the prediction of the de-
mand of transport supplementation points is relatively satisfactory.
The industrial area of VIPE Larisa results in medium sized errors
contrary to the industrial consumer VFL.

There is a variety of consumption levels among the points and
this is reflected by the large divergences of the indicators especially
in MAE and RMSE. These indicators measure directly the sum of
differences of the predicted and real demand value per day in the
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Fig. 11. Absolute Errors per day referring to Athens.

%] 100 L T T T T T
@
]
= —
@
E
=
b
e 50t .
-
=]
i
@
=
-
) 0 1 ./ 1 1 L
= -1 -0.5 0 05 1 15 2 25 104

Error value

Fig. 12. Histogram of errors referring to Athens.



242 LP. Panapakidis, A.S. Dagoumas / Energy 118 (2017) 231—-245

test set. Also, they indicate indirectly the demand level. The values proportional. For example, according to Table 2 Agioi Theodoroi
of the MAE and RMSE with those of MAPE are not always have low MAE and RMSE but high MAPE. The opposite is the case
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Fig. 13. Real and predicted series (original and WT components) of ELPE.
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for Athens. As mentioned earlier, no data pre-processing have
employed. The presence of very low values and zeros affect nega-
tively the models operation, if the assessment is held with the
MAPE indicator. When the denominator of MAPE (i.e. the real
value) is an extremely low value, the average percentage error of
the specific instance (i.e. day) is extremely high. Thus, MAPE re-
ceives large values. In most generation units, there are instances
that the consumption is zero. These instances differ in terms of
number and position within the gas demand series, a fact that
provide limitations in the forecasting process. The operation of gas
fired generation units is affected mostly by the energy market ac-
tions (i.e. unit commitment, economic dispatch and others).
Therefore, they do not follow the patterns of other points, a fact that
is preliminary shown by Fig. 2. Note that large MAPE values are
referred also to other studies [31]. When we need to measure
percentage errors, the MARNE indicator is more suitable. Contrary
to MAE and RMSE, it is expressed in per unit values and this fact
allows us to have a clear view of the comparison between the
models.

For a graphical examination of the forecasting performance,
Fig. 10 presents the real and predicted series of Athens after the
utilization of the proposed model. All vertical axis are expressed in
MWh. It is shown that in each case the predicted curve follows in a
large portion the real one. According to the original gas series, the
demand of Athens is high in the winter months of 2016 and pro-
gressively decreases until the summer months where it reaches the
lowest levels. From this pattern, at least theoretically, it is shown
that natural gas is utilized mainly for heating loads. Fig. 11 displays
the absolute errors per day that refer to the original series predic-
tion shown in Fig. 10. The lower errors are met at the end of the
series. The largest error is found in the first instance. If more
research effort is placed in eliminating this error, MAPE of the point

of Athens will decrease in a large portion. This large error is met
only once according to Fig. 12 that shows the histogram of errors.
This histogram is another indication of the robustness of the pro-
posed model.

Another example is found in Fig. 13, where the real and pre-
dicted for original series and each WT component of ELPE point are
compared. ELPE refers to a gas fired generation unit located in
Northern Greece and owned by the largest petroleum processing
company of Greece. The D1, D2 and D3 components are almost
symmetrical around zero. The original series is not volatile and
present values close to zero. According to the A3 component and
original series curves, there are higher predictions errors. This is
also proven by Fig. 14 which displays the absolute errors per day of
the test. Combing the fact that is many instances where the con-
sumption is zero, the MAPE indicator receives large values. The
histogram of errors is presented in Fig. 15. While the larger gath-
ering of error values are met close to zero, there are some instances
that correspond to large aberrations between the prediction and
real series.

Fig. 16 presents the comparison between the real and the pre-
dicted series for Alouminion, Komotini PPC, VIPE Larisa and Drama
distribution points. Again it is shown that the model succeeds by a
large portion to capture the demand patterns of the various dis-
tribution points. Alouminion and Komotini PPC correspond to
generation units. Here the errors are higher compared to the other
two points. The pattern VIPE Larisa is almost periodic; it implies a
specific pattern of industrial activity followed in all months of the
test set. Drama is a town located in north Greece. The natural gas
consumption is high during the winter months and exhibits a
continuous decrement towards the summer. Just like the city center
of Athens, it is implied that natural gas is used mainly to cover
heating loads.
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4. Conclusions

Accurate forecast of energy demand is essential for utilities,
energy traders, regulatory authorities, decision makers and others.
The significance of robust forecasts of crucial parameters like
electricity load, fuel demand, energy prices and others is evident for
the decision making strategy in short-term horizon. Natural gas
demand forecasting is also essential in long-term planning, towards
supporting the decisions regarding gas imports, tariff design,

maintenance, pipeline system expansion and others. In recent
years, the electricity load forecasting literature has witnessed an
enormous growth of research papers. On the contrary, natural gas
demand forecasting is relatively more limited. While contemporary
energy policies seek ways to limit the utilization of coal and pe-
troleum, natural gas and renewables energy resources appear as
strong candidates to gradually replace these aforementioned en-
ergy carriers.

The aim of this paper is to test the robustness of a novel hybrid
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computational intelligence model in day-ahead natural gas de-
mand predictions. The proposed model combines the Wavelet
Transform (WT), Genetic Algorithm (GA), Adaptive Neuro-Fuzzy
Inference System (ANFIS) and Feed-Forward Neural Network
(FFNN). The WT is used to decompose the original signal in a set of
subseries and then a GA optimized ANFIS is employed to provide
the forecast for each subseries. ANFIS output is fed into a FFNN to
refine the initial forecast and upgrade the overall forecasting
accuracy.

The model is applied to all distribution points that compose the
natural gas grid of a country, in contradiction to the majority of the
literature that focuses on a limited number of distribution points.
The reported errors in load forecasting tasks corresponding to
aggregated system level are below 3%. However, this is not the case
for natural gas series. This is mainly due to the high volatilities that
the gas series exhibit in many distribution points. This approach
enables the comparison of the model performance on different
consumption patterns, providing also insights on the characteris-
tics of large urban centers, small towns, industrial areas, power
generation units, public transport filling stations and others.

According to the experimental outcomes, the lowest errors are
met in large city centers. The gas fired generation units lead to
higher errors in most cases, but this due to the dynamics of the
wholesale electricity market, demanding more specific modeling
approaches such as the unit commitment and the power systems
expansion planning problems, but as well to the presence of zero
values that affect the calculation of the MAPE indicator. For this
reason, more forecasting validity indicators are needed to assess
the performance of the forecasting tool. In the case of presence of
zero or extremely low values, MARNE indicator appears more
suitable.

The proposed model is characterized by high flexibility,
comprehensive operation and low requirements for computation
resources. Thus, it can be used by modern utilities, grid operators
and market participants.

The natural gas forecasting problem is a very challenging engi-
neering task. Gas demand series are volatile and can be influenced
by a diverse group of variables. Therefore, more effort should be
placed towards the goal of increasing the prediction accuracy. The
future challenges in the natural gas demand forecasting can be
summarized in the following: a) To explore data-preprocessing
techniques in terms of lowering both the forecasting error and
the execution time, b) to construct new models within the concept
of “combined forecasts”, ¢) to involve the clustering tool in order to
extract natural gas profiles and use them in the forecasting process.
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