

The (GAMS) Transport Problem

Outline

- Introduction
- Basic LP programmes
 - The diet problem
 - Comparative advantage
- The GAMS Transport Problem
 - Standard algebraic presentation
- Structure of a GAMS Programme
- The Transport Problem in GAMS Code
- Next

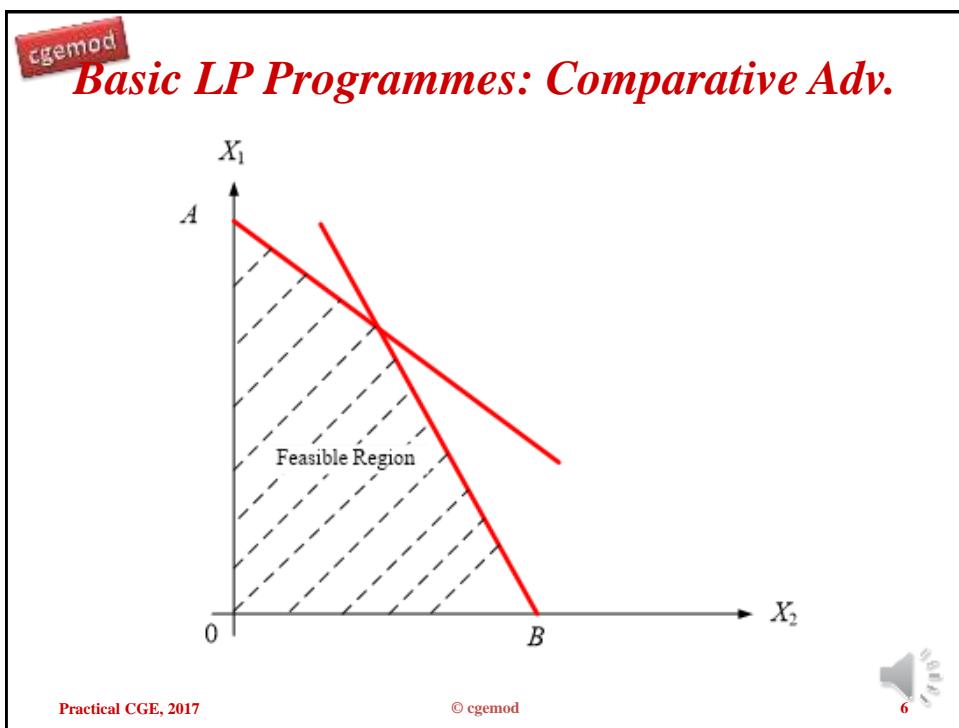
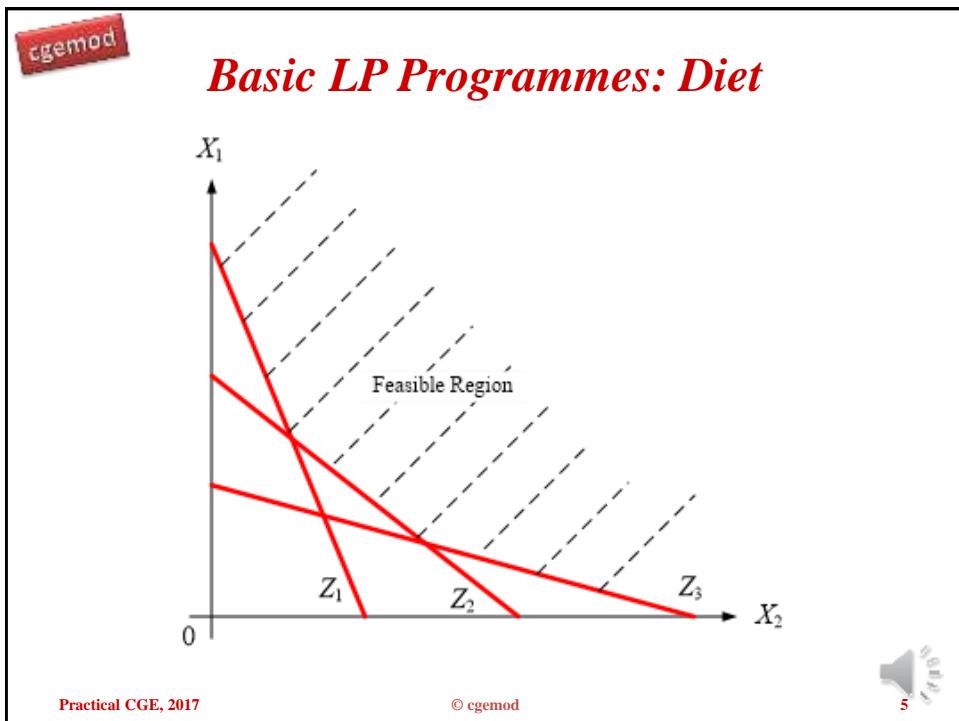
Introduction

- A classic linear programming (LP) problem
 - LP and CGE problems are optimisation problems
 - LP problems are a slightly simpler starting point
 - AN LP problem can demonstrate all the key elements in a GAMS programme
- The GAMS tutorial uses this LP programme
 - A printed copy of the GAMS tutorial may prove helpful.

Basic LP Programmes: Diet

- The diet problem
 - OBJ: minimise the cost (C) of achieving a minimum consumption of three nutrients (Z_1, Z_2, Z_3)
 - STO: the two available food commodities (X_1, X_2) supplying the nutrients in different ratio ($a_{i,j}$)

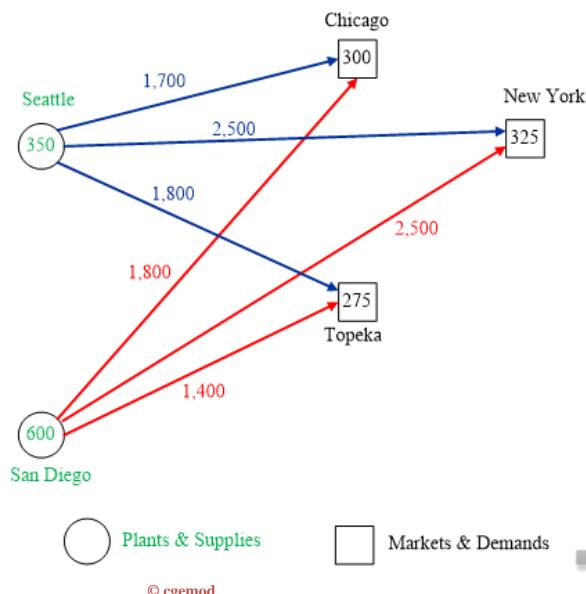
$$\text{Min } C = p_1 \cdot X_1 + p_2 \cdot X_2$$



sto

$$a_{11} \cdot X_1 + a_{12} \cdot X_2 \geq Z_1$$

$$a_{21} \cdot X_1 + a_{22} \cdot X_2 \geq Z_2$$

$$a_{31} \cdot X_1 + a_{32} \cdot X_2 \geq Z_3$$



cgemod

The GAMS Transport Problem

Minimise total transport costs of supplying three markets from two production plants

Practical CGE, 2017

© cgemod

7

cgemod

The GAMS Transport Problem

Indices/Sets

i = plants

j = markets

Available Data

a_i = supply of commodity at plant i (in cases)

b_j = demand for commodity at market j (in cases)

d_{ij} = distances between plant i and market j (\$/mile//case)

f = freight cost (\$/case/1,000 miles)

Decision Variables

X_{ij} = amount of commodity to ship from plant i to market j (cases)

Practical CGE, 2017

© cgemod

8

cgemod

The GAMS Transport Problem

Constraints


Supply limit at plant i : $\sum_j X_{ij} \leq a_i \quad \forall i$

Demand at market j : $\sum_i X_{ij} \geq b_j \quad \forall j$

$X_{ij} \geq 0 \quad \forall i, j$

Objective Function

Minimise $\sum_i \sum_j c_{ij} X_{ij}$

The GAMS Transport Problem

Data

Plants	Markets			Supplies
	New York	Chicago	Topeka	
(Distances '000 m)				
Seattle	2.5	1.7	1.8	350
San Diego	2.5	1.8	1.4	600
Demands	325	300	275	

Freight Cost

\$90 per case per 1,000 miles

Structure of a GAMS Programme

SETS	Declaration Assignment of Members
Data (PARAMETERS, TABLES, SCALARS)	Declaration Assignment of Values
VARIABLES	Declaration Assignment of Type (optional) Assignment of bounds/initial values
EQUATIONS	Declaration Definition
MODEL and SOLVE statements (optional) DISPLAY statements	

Practical CGE, 2017

© cgemod

11

The Transport Problem in GAMS Code

```

$TITLE A TRANSPORTATION PROBLEM (TRNSPORT,SEQ=1)
$OFFUPPER
* This problem finds a least cost shipping schedule that meets
* requirements at markets and supplies at factories

SETS
  i  canning plants  / SEATTLE, SAN-DIEGO /
  j  markets        / NEW-YORK, CHICAGO, TOPEKA / ;

PARAMETERS
  a(i)  capacity of plant i in cases
        / SEATTLE      350
          SAN-DIEGO    600  /
  b(j)  demand at market j in cases
        / NEW-YORK     325
          CHICAGO     300
          TOPEKA     275  / ;

```


Practical CGE, 2017

© cgemod

12

The Transport Problem in GAMS Code

```

TABLE d(i,j)  distance in thousands of miles
              NEW-YORK        CHICAGO        TOPEKA
SEATTLE          2.5            1.7            1.8
SAN-DIEGO        2.5            1.8            1.4  ;

SCALAR f  freight in dollars per case per thousand miles  /90/ ;

PARAMETER c(i,j)  transport cost in '000 of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

VARIABLES
  X(i,j)  shipment quantities in cases
  Z       total transportation costs in thousands of dollars ;

POSITIVE VARIABLE X ;

```


Practical CGE, 2017

© cgemod

13

The Transport Problem in GAMS Code

```

EQUATIONS
  COST          define objective function
  SUPPLY(i)     observe supply limit at plant i
  DEMAND(j)    satisfy demand at market j ;

  COST..        Z  =E=  SUM((i,j), c(i,j)*X(i,j)) ;
  SUPPLY(i)..   SUM(j, X(i,j))  =L=  a(i) ;
  DEMAND(j)..   SUM(i, X(i,j))  =G=  b(j) ;
  MODEL TRANSPORT /ALL/ ;
  SOLVE TRANSPORT USING LP MINIMIZING Z ;
  DISPLAY X.L, X.M ;

```


Practical CGE, 2017

© cgemod

14

Next

- Transport Problem Exercises
- Exploring the transport problem model
- Debugging a GAMS model
 - Syntax errors
 - Execution errors
- Changing the model
 - Changing unit transport costs
 - Changing distances
 - Adding a new markets
 - Adding intermediate (wholesale) markets

The End

