Multiple Regression:
Theory and Application

Most economic relations, and the processes they describe, involve more than
one determinant of some particular dependent variable. For example, the earn-
ings function examined in Chapter 6 presumes that education is the only iden-
tifiable variable that affects a person’s earnings. Surely many more variables
are directly relevant, and in this chapter we will go on to examine the roles of
experience, demographic characteristics, and other variables.

This chapter covers both the theory and application of multiple regression,
which involves more than one explanatory variable in a single regression equa-
tion. Most of the ideas regarding simple regression carry over, so there are
relatively few new concepts to learn.

7.1 Two Explanatory Variables

As a first step in multiple regression, we consider an economic process in which
the variable Y is determined by two given variables, X, and X,. Much of what
needs to be said about the theory and estimation of the corresponding model is
a direct extension of the case of simple regression.

Our thinking is that n observations are subjected to this process, one at a
time. For each observation separately, the values of X, and X, are fed in, and
the value of Y is determined. The n values of X, X5, and Y are all observable,
and they can be collected in a data set. Graphically, the observations can be
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plotted in a three-dimensional scatter diagram, in which the explanatory varia-
bles X, and X, are measured along the two axes defining the base and the
dependent variable Y is measured vertically. Each observation is graphed as a
single point, and together the observations resemble a cloud.

Two aspects of this process should be noted. First, X, and X, are the only
identifiable and observable variables that affect Y. By explicit exclusion, other
variables that might be measured for each observation are understood to play
no direct role in the determination of Y. Second, the values of X, and X, are
taken as given. These are determined outside the process under consideration,
and we make no effort to understand why they take on whatever values they
do.

We move toward statistical analysis by making a more concrete specification
of the process by which Y is determined. We theorize that the value of variable
Y for each observation is determined by the linear multiple regression model

Y; = By + BX,, + BXs + u, (7.1)

Variable Y is the dependent variable (or regressand), and X ; and X, are the
explanatory variables (or regressors). The disturbance u is considered to be a
random term that represents pure chance factors in the determination of Y. When
a particular observation is referred to, a second subscript is used for the ex-
planatory variables.

Based on (7.1), we can decompose each Y, value into a systematic component

LY, ] = By + B Xy + BXy (7.2)

and a random component, u;. The systematic part of the relation between Y, X,,
and X, is given by an equation of the form

E[Y] = By + BX, + B-X; (7.3)

which we call the true regression. This describes a plane graphed in the three-
dimensional scatter diagram, but it is also known as a linear equation. With ¥
measured in the vertical direction, the observations (points) lie above or below
the true regression, each at a vertical distance u;.

Given this theoretical statement of how observable data are generated, our
econometric task is to estimate the coefficients 3,, 8,, and B>. As with simple
regression, our technique is based on the method of ordinary least squares. When
we fit a plane to the three-dimensional scatter of data points, it has an equation
of the form

Y = By + BX, + BX, (7.4)

into its fitted (or predicted) value

}A/i = Bo + B]Xu + BAzXL‘ (7.5)
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and its residual
e, =Y, - Y =Y — Bo — B Xy — B-X5; (7.6)

The OLS technique calculates ,éo, ,él, and ,éz so as to make the sum of
squared residuals as small as possible, and a derivation similar to that given in
the appendix to Chapter 5 leads to estimators for the coefficients (i.e., formulas
for calculating them). To simplify the presentation, we adopt the notation here
that a lowercase letter stands for the deviation of a variable from its mean. Thus

y:Y_Y, X, :X! —'X!, and X:'):Xf)—X') (77>

The estimators are

() - ()

B, = 5 (7.8)
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,éo =Y - BAle - ézxz (7.10)

Notice that the estimators for all three coefficients involve all the values for
all the variables. For example, ,éz depends on the values of X, as well as those
of Y and X,. Hence these estimators are not equivalent to the coefficient esti-
mators from the simple regression model applied twice. In other words, the
multiple regression coefficients cannot be obtained by estimating two simple
regressions, one of ¥ on X, and another of ¥ on X,. [The exception to this is
the special case when the correlation (and covariance) between X, and X, 1is
zero; this would imply that 2 x,x, = 0.]

Our interpretations of the coefficients of the estimated regression differ in an
important way from the case of simple regression. First, if we compare one
possible observation with another, they may differ with regard to the values of
X; and X, and also with regard to the predicted value ¥. These differences are
linked by

(7.9)

AY = B, AX, + B, AX, (7.11)

This is derived by subtracting an equation like (7.5) specified for one point from
the corresponding equation specified for another. This equation determines how
changes in the values of the explanatory variables affect the predicted value of
dependent variable. Graphically, this equation compares two points on the es-
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timated regression plane and shows how differences in the three dimensions are
related.

Now, if only one explanatory variable changes in value while the other
remains the same, then

AY = B, AX,  when AX, =0 | (7.12)
and
AY = 3, AX,  when AX, =0 (7.13)

These provide the basis for interpreting the slope coefficients: ,él gives the
impact on the predicted value of Y of a unit increase in X, holding constant the
value of X,. Note that this phrasing corresponds closely to the economic concept
of ceteris paribus. Similarly, ,8, gives the impact on Y of a unit increase in X5,
holding X, constant. These interpretations will be illustrated and enhanced in
later examples and discussion.

As with simple regression, the SER and R* serve as measures of goodness
of fit, and their interpretations are the same. The general definitions of these
measures are given in the next section.

The Earnings Function

As an example, we extend our analysis of the earnings function explored in
Chapter 6. Suppose that labor market theory suggests that in addition to formal
education, experience working in the labor force has a direct effect on workers’
earnings. This may be because experience represents on-the-job training and
thereby increases a person’s productivity and wage, or it may be because of
some other considerations. If this theory is correct and if the relation is linear,
it is appropriate to formulate the multiple regression model

EARNS, = B, + BED, + B.EXP, + u, (7.14)

Turning to estimation, the 100 observations in the cross-section data set in

Chapter 2 are used to obtain the estimated regression

T —
EARNS, = —6.179 + 0.978ED, + 0.124EXP,

R?* = 315 SER = 4.288

(7.15)

Holding constant the level of education, each year of experience is estimated
to Increase expected earnings by $124. The ceteris paribus qualification ‘‘hold-
ing constant the level of education’’ is an interpretation based on (7.13); it does
not mean that we or the computer hold some values specially fixed during
estimation or make comparisons only among observations with common values

1 hets tha A th
for ED. Considering the 30-year age difference between the youngest and the

oldest men in the sample, the estimated coefficient implies a (0.124)(30) =
3.720 thousand dollar annual earnings difference. Thus experience might be
Judged to be a moderately important factor in the determination of earnings.
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The estimated impact of education on earnings is increased substantially from
the finding in the simple regression (0.797 to 0.978). Of course, the true impact
of education has not changed—we did nothing capable of altering that—but the
change in specification has affected our estimated impact. We return to this
later.

We can use the estimated model to predict earnings for given values of ED
and EXP in the usual way. For example, the predicted earnings (in 1963) for a
college graduate with five years of experience is

T —
EARNS; = —6.179 + (0.978)(16) + (0.124)(5) = 10.089 (7.16)

thousand dollars. In addition, the method of constructing EXP provides auxiliary
information that permits us to answer a question like this: taking into account
that for a specific individual an increase in ED of one year means a decrease in
EXP of one year, what is the total economic effect on earnings of going to
school for one more year? That is, we are seeking the joint impact of AED =

1 and AEXP = —1. Based on (7.11),
——
AEARNS = (0.978)(1) + (0.124)(—1) = 0.854 (7.17)

thousand dollars per year. Note that the estimated intercept plays no role in a
calculation like this.

The R? in the multiple regression is .315, which is somewhat higher than the
.285 in the simple regression. Does the fact that R? increases by only .030 mean
that the impact of experience is marginal, compared with that of education? No,
not necessarily. ED could seem to get most of the credit simply because we
considered it first. The R? of a simple regression of EARNS on EXP in these
data could be fairly high, although in fact it is not in this case.

7.2 The General Case

The general linear multiple regression model is a particular specification of
some economic process in which the values of a dependent variable (or regres-

1 3 A rmgracamee) T crmismsen ]
sand) are determined ]"_‘/ several DV“]"“atOi‘y variables {or regressors). In generai
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we may say that ¥ depends on k explanatory variables:
Y= By + BXy, + BXy, + -+ -+ BiXy + oy (7.18)

where the names of the variables are X, X,, . . ., X,. A typical variable is
denoted by X, and a typical coefficient by B;. When a particular observation is
referred to, a second subscript is used. so the ith observation on the jth variable
s X,

As with simpl

(@]
—
@]

gression, our notion is that this model accurately reflects
the way some process works. Indeed, this notion is more acceptable with mul-
tiple regression because this technique allows us to take into account all the
important variables that help determine the value of the dependent variable.
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Since most economic processes involve multiple causes of a single effect, this
feature is especially important.
If it happens that k& = 1, this model reduces to that of simple regression

Y, = By + BX,; + u; (7.19)

in which X, is the same as X in (5.1). We have treated the case of simple
regression separately because it readily permits graphical interpretation and be-
cause the algebra of the derivations is relatively simple. If k 2, the model
reduces to the case with two explanatory variables h
section.

The ordinary least squares (OLS) technique for estimating the coefficients
Bo> Bi, Bs. - .., B, is an extension of that for the simpler cases, and the
estimates of these parameters are denoted by ,80, ,81, Bq, . ,6’A For any
observation the true value of ¥, can be decomposed into the ﬁtted value and the
residual:

?

Y, = f}i + e = BAO + ,BAlei + o :ékaf + e (7.20)

Recall that with simple regression (k = 1) the observations can be plotted in a
two-dimensional graph, and the estimated regression is the line that provides
the best possible fit to the scattered points. When k = 2, the observations can
be plotted in a three-dimensional graph, and the estimated regression is the plane
that provides the best possible fit to the scattered points. By extension, in the
general case the observations can be thought of as plotted in a (k + 1)-dimen-
sional graph, and the estimated regression is a hyperplane fit through the scat-
tered points.

The OLS technique calculates the ﬁ so as to make the sum of squared
residuals as small as possible:

OLS criterion: minimize SSR = . ¢? (7.21)

Suffice it to say that we end up with a set of estimators analogous to those for
the simpler cases. All the data are used together to solve simultaneously for the
k + 1 coefficients; it is not the case that we just estimate k simple regressions.
A computer can carry out the necessary calculations, and we rely on this facility.

The discussion in Section 5.3 regarding the comparison of the estimated
regression coefficients with the corresponding true regression coefficients applies
fully to multiple regression. Although we might wish that each estlmated coet-
ficient were equal to the corresponding true coefficient, so that ,8 = (3, this
is unlikely ever to occur. (As before, the asterisk indicates the Lomputed values
in a set of data.) The difference between B and 3; arises from the partlcular
pattern of values taken on by the disturbances. (Just how the value of ,B might
be related to B; is the subject of sampling theory, which is discussed in Chapter
11.) Overall, we recognize that the estimated regression will be different from
the true regression, but we hope that the differences are not too great.
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To interpret and apply the estimated regression model we need to see how
changes in the regressors affect the predicted value of the regressand. The es-
timated regression is given by

Y =By + BX, + BXy + - -+ B X, (7.22)
For any given set of changes in the explanatory variables,
= B, AX, + B, AX, + - - - + B, AX, (7.23)

provides the method for calculating the effect on the predicted value of Y of
specified changes in the X’s.
If only one explanatory variable changes in value while all the others remain

the same, then
= ,é’ AX; , holding all other regressors constant (7.24)

This provides the basis for interpreting the value of any single coefficient: ,8
gives the impact on the predicted value of Y of a unit increase in X, holdmg
constant the values of all the other variables. The latter qualification is 1mportant
and it corresponds closely to the economic concept of ceteris paribus. This
concept does not require or imply that there are no relations among the explan-
atory variables, but it ignores them in assessing the effect of each variable.

If a change in X, does cause a change 1n other explanatory variables, we
recognize that the total economic effect on ¥ includes the ceteris paribus effect
,B plus the effects of the consequent changes in the other variables, through
(7.23). Additional information about how the explanatory variables affect each
other would be needed to make this calculation, but usually it is not available.
Sometimes such information is developed in multiequation models, which are
beyond the scope of our present concern. In working with single-equation
models, the only effects revealed are the ceteris paribus effects given by the
individual regression coefficients, and these are what we are interested in.

Some of the properties of the estimated regression, which is usually called a
line even though it is not one, are the same as for simple regression. First, it
turns out that 2 ¢; = 0; that is, the positive and negative residuals cancel out
In summation, so the average error is zero. Second, the point Y, X c X
X, lies on the fitted line: that i is, the regression goes through the pomt of means.
Third, the correlation between the residuals and any explanatory variable is zero.

The standard error of regression is given by

/ E

e;
SER = | ——=L 7.25
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How well the estimated regression fits the data is also measured by the
coefficient of determination, R?, which is calculated as in the case of simple
regression

i8]

I
2 €;
i=1

R* =1 — — ’ (7.26)
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Since each e, is the part of ; that is not explained by the regression, R? is again
interpreted as the proportion of the variation in Y that is explained by the regres-
sion (i.e., that is explained by the variation in the X,;’s). A perfect fit, in which
each e; = 0, yields R? = 1, and if the fit is not very good at all, R? is close to
zero.

In practical econometrics we often estimate more than one regression in-
volving the same dependent variable. For example, so far we have estimated
two earnings functions: one involving ED as the only explanatory variable, and
a second involving both ED and EXP as explanatory variables. In comparing
regressions like these it is useful to have a statistic or an indicator that tells us
which regression fits better. Our natural candidates are the SER and R>.

The R? is a more popular measure of fit for any single regression. However,
for comparing regressions like our earnings functions, it always gives the same
answer: the regression with additional variables included fits better. This is
because the addition of an explanatory variable to an original regression model
cannot raise the sum of squared residuals, SSR. (Since OLS is acting to minimize
this sum, it need not allow an additional specified variable to increase the SSR:
it could effectively ignore the new variable rather than let it worsen the SSR.)
This sum, which is 3 e, appears in the numerator of the ratio in (7.26). Thus
for a given set of data on a dependent variable, Y, the addition of an explanatory
variable to a regression model cannot decrease R?, and in practice it always
increases it at least a bit.

However, the increase in R? is obtained at a statistical “‘cost’’: the inclusion
of another variable. An indicator of whether the new equation “‘really’ fits
better should assess whether the decrease in SSR achieved by including a new
regressor is substantial enough to outweigh the cost of doing so. A statistic that
does this is known as the adjusted or corrected R?, which is denoted by R? and
defined as

R =1 — =l (7.27)

The symbol R? is conventionally read as “*R bar squared.”” (The overbar notation
does not signify a mean here.)
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To examine what happens to R? as another variable is added to a regression,
we need only look at the numerator of the ratio in (7.27) because the denominator
stays fixed. The numerator itself is a ratio. If adding a variable causes 3, €2 to
decrease proportionately more than n — k& — 1 decreases, R> will increase; if
adding the variable causes X e7 to decrease only slightly, by proportionately
less than the decrease inn — k — 1, R? will decrease. Note that the expression
n — k — 1 is the number of degrees of freedom, and its decrease is the link to
the “‘statistical cost’’ of adding another variable.

For computational purposes, it is possible to determine R? from R? and readily
available parameters:

R =R - —~ R?) (7.28)
n—k—1
From this we see that R? is less than R?, except if R> = 1. Unfortunately, R>
does not have as straightforward an interpretation as R? does, and sometimes it
can be negative. _

Whether R? would be higher or lower in comparable regressions can be
determined by examining the SERs. To see this, note that the numerator of the
ratio in (7.27) is the square of SER. Thus a decrease in the SER occurs whenever
R2 increases, and an increase in the SER occurs whenever R? decreases. In other
words, the SER functions exactly the same as R? as an indicator of whether the
addition of an explanatory variable ‘‘really’’ improves the fit. For this reason,
we make little use of the RZ.

An implication of this is that our two basic measures of fit, SER and R?, can
sometimes give conflicting signals. Whenever a variable is added to the speci-
fication of a regression, R* will increase and our basic interpretation is that the
“overall fit’’ is improved. However, when the improvement in the fit is rela-
tively small, SER will increase and our interpretation is that the typical error of
fit got worse.

The Consumption Function

The original Keynesian idea that aggregate consumption is determined pri-
marily by income can be expanded to include other potentially important ex-
planatory variables. We might think that the rate of interest available on savings
and the rate of inflation in consumer prices are important. Economic theory does
not specify strictly whether these effects would be positive or negative, so we
approach the data with an exploratory frame of mind.

Using the 25 annual observations from our time-series data set, we estimate

CON, = —2.370 + 0.910DPI, + 0.500RAAA,
—0.562RINF2.,

4

R* = 997 SER = 9.309

(7.29)
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The estimated marginal propensty to consume, which gives the impact on CON
of a unit increase in DPI while holding RAAA and RINF2 constant, is 0.910.
We see also that a one-percentage-point increase in the long-term interest rate
is estimated to increase consumption (i.e., decrease saving) by 0.500 billion
dollars, and a one-point increase in the rate of inflation decreases consumption

by 0.562 billion dollars. '
In comparison with the simple regression of CON on DPI (6.10), we see that
the estimated marginal propensity to consume is changed only slightly. The R*
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higher here than in (6.10). As noted above, this situation leads to a lowe
the present model.

We see that the addition of RAAA and RINF?2 to the simple form has not led
to a model with appreciably more explanatory power. This, in itself, does not
mean that the new variables do not belong in the model. If DP/ were treated as
a “‘new’’ variable, and compared with a simple regression of CON or RAAA or
RINFZ2, then it might appear to have little additional explanatory power. (We
see from Table 3.4 that the correlation between CON and RAAA is .952.) In
Chapter 12 we present formal tests that also bear on this question.

7.3 Dummy Variables

In all the regression models considered so far, every variable has been a cardinal
measure of some economic characteristic. For example, CON measures aggre-
gate consumption in billions of constant dollars and £D measures the years of
schooling completed by individual persons. These variables are included in a
regression model in a natural way, so that changes in the numerical value of an
explanatory variable have consistent numerical effects on the dependent variable.

Another type of data variable introduced in Chapter 2 carries information that
is essentially categorical, such as a person’s race, sex, or region of residence.
This information can be used to classify or categorize observations or to separate
them in some way, but the characteristic cannot be measured in any meaningful
way. For example, the variable REG in the cross-section data set is equal to |
if the worker lives in the Northeast, 2 if he lives in the North Central region,
and so on. The variable REG indicates where the worker lives, but the values
I, 2, 3, and 4 do not result from measuring or counting anything. Hencc the

information contained in REG cannot be included directly into a r

model.

However, when the numerical outcome of an economic process depends in
part on some categorical characteristic of the observation. this information must
be brought into the regression specification somehow in order for the model to
describe the process correctly. The technique for doing this involves constructing
new regressors known as dummy variables and treating them exactly like other

regressors in the multiple regression framework.
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To start with a simple case, suppose that we are focusing on the relation
between Y and X and that some such relation occurs both for men and women.
One possibility is that the process determining Y is quite different for men and
women. In this case, where there are essentially two separate processes occur-
ring, we would separate the data according to sex and carry out separate statis-
tical analyses. That is, we would have two separate models, one estimated with
data for men and the other estimated with data for women. '

Another possibility, which leads to the use of dummy variables, 1s that we
think the process is such that the effect on Y of a change in X is the same for
both sexes, but that there may be a systematic difference between men and
women in the levels of Y associated with each particular value of X. These 1deas
are represented in Figure 7.1, which shows that the expected value of Y is a
separate linear function of X for each sex, with equal slopes but different inter-
cepts. Let the common slope value be 3, and let the intercept for men be B,.
The intercept for women could be given a separate symbol, but instead we let
B> be the difference between the women’s and men’s intercepts, so that the
intercept for women is B, + [3,. Since the two functions have the same slope,
B3, also is the difference in E[Y] between women and men having any particular
value of X. As drawn in the figure, 3, is positive so that the relation for women
lies above that for men. In our general thinking the sign of 3, is not specified,
so that the relation for women may lie above or below that for men.

These three parameters can be estimated by constructing a dummy variable,
S, that is equal to O for every observation that is a man and is equal to 1 for
every observation that is a woman. We can formulate our specification so far
as

E[Y] = By + B X + BS (7.30)
E[Y] A
Women: E[Y] = 8o+ 6 X + 8,
B, Men: E[Y] = By + ;X
P T /
BO + ‘82 BZ ﬁl
1
Bo

T

X

FIGURE 7.1 This illustrates an economic process in which the impact on Y of a change
in X is the same for men and women. but in which men and women having the same
value for X have different expected values for Y. Assuming linearity. the parameterization
in the diagram leads naturally to the dummy variable formulation of a regression model.
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Regardless of the value of S, the slope in the relation between E[Y] and X is
B,. For men, with S = 0, the right-hand side of (7.30) equals B, + B,X, so
the intercept is B,. For women, with § = 1, the right-hand side of (7. 30) can
be rearranged as (B, + B,) + B,X, so the intercept is B, + [3,. Adding a
disturbance for econometric reality. we have a multiple regression model

= By + BX; + BaS; + u; | (7.31)

which can be estimated by OLS.

The essential property of a dummy variable is that it identifies each of the
observations as being in one of two groups. For all the observations in the first
group the variable is set equal to zero, and for all the observations in the second
it is set to 1. When the dummy variable is included as a regressor in a multiple
regression, its coefficient represents the difference in the intercept between the
second group and the first. Therefore, it also measures the impact on the ex-
pected value of the regressand of an observation’s being in the second group
rather than the first, holding all the other regressors constant. Sometimes the
dummy is called a shift variable, because it simply causes a shift in the relation
between E[Y] and the other regressors; it does not otherwise alter that relation.

When the regression model is specified, the group given a dummy value of
zero is called the excluded group, and the group given a dummy value of 1 is
called the included group. With a single dummy variable in the regression
model, the intercept for the excluded group is simply B, and the intercept for
the included group is B, + B,. That is, the intercept for the included group is
equal to the intercept for the excluded group plus the coefficient on the dummy
variable. Given two groups, either may be taken as the included one; this choice
will affect the values of particular coefficients but not the overall interpretation
of the regression.

For example, suppose theory suggests that earnings depends linearly on ed-
ucational attainment but that there is a shiftlike difference between races. Our
cross-section data set includes the variable RACE, which was coded in the
interview as 1 for whites and 2 for blacks; other races were ignored in the data
selection. This variable is unsatisfactory for our purposes. We construct instead
a new regressor, DRACE, which is a dummy variable taking the value O for
whites and 1 for blacks. Algebraically,

DRACE, = RACE, — | (7.32)

The earnings function theory leads to a multiple regression. which is estimated
as
T —

EARNS; = —0.778 + 0.762ED; — 1.926DRACE, (7.33)
R> = 293  SER = 4.356 |
The coefficient ,é, = 0.762 estimates that the impact on earnings of an addi-

tional year of schooling is $762 for both blacks and whites. The estimated impact
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TABLE 7.1 First 10 Observations For
Estimating Equation (7.33)

Obs. EARNS - ED DRACE
1 1.920 2 1
2 12.403 9 0
3 5.926 17 0
4 7.000 0
5 6.990 12 0
6 6.500 13 0
7 26.000 17 0
8 15.000 16 0
9 5.699 9 1

10 8.820 16 0

of race is that the earnings of blacks are $1926 less than those of whites, holding
constant the level of education.

The first 10 observations used for estimating (7.33) are shown in Table 7.1.
The variables EARNS and ED are taken directly from Table 2.2. The variable
DRACE is constructed according to (7.32). Like any dummy variable, DRACE
takes on only the values O and 1.

In time-series regressions it may be that for some periods the relation between
a dependent variable and a set of explanatory variables is shifted by a constant
amount. For example, during war years the consumption function might shift
down at all levels of income, because of the decrease in production of consumer
goods and the special incentives given to saving. In this case, a model of the
form

CON,; = B, + B,DPI, + B,WAR, + u, (7.34)

would be appropriate. The dummy variable WAR takes on the value | for war-
time observations and zero for others; the coefficient B, is the shift in the
consumption function, and we expect that ,éz will be negative.

Another example is provided by the Phillips curve, which represents the
trade-off between inflation and unemployment. It is conjectured that the relation
shifted up in the middle of the 1960s because of the Viet Nam War and structural
changes in the economy. To examine this conjecture, we add a dummy variable
to the model earlier specified (6.19):

1
RINFI; = + (

where D; = 0 for the observations 1956-1964 and D, = 1 for 1965-1970. With
15 observations in total, we find that

) + B.D: + u, (7.35)

e — / 1 \

RINFI, = —0.803 + 15.030 + 0.894D,
UPCT,

R* = .600 SER = 0.936

(7.36)
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FIGURE 7.2 The Phillips curve shows the trade-off between inflation and
unemployment. Using a dummy variable specification, Equation (7.36) finds evidence that
is consistent with the conjecture that the curve shifted upward in the middle of the 1960s,
as compared with its position earlier. The reciprocal specification of the effect of
unemployment on inflation leads to the nonlinear relation shown here.

UPCT

(Note that the first regressor is actually UINV as defined previously.) The coef-
ficient on the dummy variable indicates that the Phillips curve shifted up by
0.894 percentage point in the latter part of the sample period as compared with
where it was earlier. The two estimated Phillips curves are shown in Figure 7.2.

Using categorical information with the dummy variable technique is more
complicated when there are more than two categories involved. For example,
the variable REG in our cross-section data set carries information about the
region of the country in which the person lives. The information is coded 1 for
Northeast, 2 for North Central, 3 for South, and 4 for West. Suppose that we
are focusing on a linear relation between Y and X, but want to take region into
account. Would the specification

E[Y] = By + B X + B.REG (7.37)

make sense? No. This specification does show a common impact of X on E[Y]
among the regions, but holding X constant it specifies that £[Y] is 8, greater in
the North Central region than in the Northeast, 23, greater in the South, and

(% 9 S 1 1w [ g L2 siva 14

33, greater in the West. There is no reason why the actual differences should
be so ordered or why they should be multiples of one another.

To bring in multiple-category information like region, we must construct a
set of dummy variables. One way to think about doing this is to create a separate
dummy variable for each category (region), taking on the value | if the obser-
vation belongs to that category and O if it does not. From REG, we can create

four dummy variables: DNEAST, DNCENT, DSOUTH, and DWEST. to use
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mnemonic names. As before, each dummy variable serves to identify each
obervation as being in one of two groups (i.e., in the specified region or not).
In formulating the regression model, one of the dummy variables must be ex-
cluded. Then, the coefficient on each of the included dummy variables represents
the difference between the intercepts of that category and the excluded category.
The intercept for the excluded category is simply ;. Were all the categories’
dummy variables included, we would have one more coefficient than we could
interpret logically; such a redundancy is symptomatic of a major mistake in
specification, which we review in Section 7.6.

181N

Rev ising (737) we ha‘v'e
E[Y] = By + B,X + B.DNCENT + B, DSOUTH
+ B,DWEST

(7.38)

If a person lives in the excluded Northeast, the value of each of the included
dummy variables is zero and

ElY] = B, + BX (7.39)

If a person lives in one of the other regions, the corresponding dummy variable
1s 1 but the other two are O; thus

E[Y] = By + BX + B, (j = 2,3, 0r4) (7.40)

The nterpretation of each dummy variable coefficient (B;) is the difference in
E[Y] of living in that region rather than the excluded Northeast region, holding
X constant. ’

For example, we reconsider the simplest earnings function. Now taking re-
gion into account, the estimated regression is

T —
EARNS; = —0.803 + 0.794ED; + 0.288DNCENT;
—0.828DSOUTH,; — 1.992DWEST, (7.41)
R*> = 310 SER = 4.351

which is graphed in Figure 7.3. The coefficients on the dummy variables esti-
mate shiftlike differences among the predicted earnings for persons living in
different regions. It does not matter for the ultimate interpretation which of the
region dummies is excluded, but it does affect the constant and dummy coef-
ficients that are actually found.

The dummy variable technique can be extended to cases with more than one
categorizing variable. For example, if theory specifies that earnings is a function
of education, race, and region, then the regression model would include DRACE
and the three dummy variables for region. For men in the sample who are white
and live in the Northeast. the values of all the dummy variables are zero: this
is the reference group to which other observations are compared.
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FIGURE 7.3 The simplest earnings function taking region into account uses three
dummy variables to estimate the shiftlike differences among the regions. In Equation
(7.41), the dummy for the Northeast region is excluded, and the other dummy-variable
coefficients give the shift between each of the other regions and the Northeast. If a
different region were excluded, the resulting graphical representation would be exactly the
same as shown here, but the dummy variable coefficients and the regression intercept
would be different because of the change of reference.

7.4 Polynomial Specifications

In Chapter 6 a variety of functional forms were introduced that allow the linear
regression model to be used even when the basic behavioral relation'is essentially
nonlinear. The idea is that transformations of variables create new variables that
can be examined in a regression framework. In the multiple regression extension
of this idea, the same transformation can be applied to all the original variables,
or different transformations can be applied to different variables. The important
requirement is that a linear relation be specified between the ultimate regressand
and the ultimate regressors.

In this section we look at another functional form that enhances the flexibility
of the regression model. In the example provided, one of the original explanatory
variables is left unchanged while the other is treated in the new way.

Thinking purely in mathematical terms, suppose that the exact relation be-
tween Y and X is like that in Figure 7.4a or b. These relations are clearly
nonlinear, but they cannot be characterized by any of the functional forms
examined in Chapter 6. The shape is that of a parabola, whose equation is
written as

_+.
If B, > 0, the parabola is concave upward, and if 8, < 0. the parabola is
2 I P 2 p
concave downward. The slope of a parabola is given by

slope of parabola = B, + 26,X (7.43)
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Y =B+ B, X + B,X?
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FIGURE 7.4 A parabolic relation between Y and X is concave upward if 8, > 0 and
concave downward if 8, << 0. Although Y is a nonlinear function of X, Y also can be
viewed as a linear function of X and X? together. This allows a multiple regression model
to specify a parabolic form for the systematic relation between Y and X.

And as with any mathematical function, we know that when AX = 1, the
corresponding AY is approximately equal to the slope.

Returning to econometrics, if the systematic part of the relation between two
variables, Y and X, is parabolic (or quadratic), we can use a linear multiple
regression model of the form

Y, = By + BXy + BXs + (7.44)

to describe the process. To do this, we let the regressor X, be equal to the
original variable X and we let the regressor X, be equal to X2. That is, we make
two regressors out of a single original variable.

With this understanding, it is conventional to rewrite (7.44) as

Yi = Bo + BX: + BX7 + y (7.45)

Although the regression model specifies that Y is a linear function of X and X2,
our interest is in the implied parabolic relation between Y and X. We satisfy this
interest by recognizing that X? must change if X does. Thus it does not make
sense to say that B, alone measurcs the impact of X on Y. Rather, the impact
on E[Y] of a unit change in X is given approximately by the slope of the implicit
quadratic equation: 3, + 28.X.

In studies of earnings functions it sometimes is suggested that the impact of
experience diminishes and perhaps even becomes negative as the amount of
experience increases. This is based on notions of physical and mental aging,
diminishing returns, and optimal investment in human capital. Holding constant
the level of education, the impact of experience on earnings is theorized to be
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like a hill-shaped parabola. Letting EXPSQ be the name of the regressor that is
equal to the square of EXP, we estimate an earnings function of the form

— ’
EARNS, = —9.791 + 0.995ED. + 0.471EXP,
—0.00751EXPSOQ, | (7.46)
R?* = 329 SER = 4.267

In reporting regressions like this, the symbol EXP? is sometimes used to denote
the second regressor.

To assess the impact of experience, we see first that the coefficient on EXPSQ
is negative. Therefore, the estimated relation between EARNS and EXP (holding
ED constant at any level) is a hill-shaped parabola, as in Figure 7.5. The slope
of this relation is

slope = 0.471 + (2)(—0.00751)EXP (7.47)

Using this, we find that a man with five years of experience will have his
earnings increased by about $396 after gaining another year, but a man with 20
years of experience will have his earnings increased by about only $171 after
gaining another year. To find the level of experience that corresponds to the
peak of earnings, we solve (7.47) for the EXP value associated with a zero
slope. Here, peak earnings occurs after about 31 years of experience, and beyond
that negative returns to experience set in. All this holds true regardless of what
the level of education is.

To assess the effect on predicted earnings of any particular change in expe-
rience two approaches are reasonable. The first, which makes sense for small
changes in experience, makes use of the slope at the original point to make an
approximation:

EARNS |

< "

31.4 EXP

FIGURE 7.5 The earnings function (7.46) includes a parabolic (quadratic) specification
for the partial relation between earnings and experience. Holding education constant at any
level. the relation between predicted earnings and the level of experience is illustrated
here. The slope, which is given by Equation (7.47), gives the impact.on predicted
earnings of a one-year increase in experience. For any given level of education. predicted
earnings reach a peak at 31.4 years of experience.
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AEARNS = [0.471 + (2)}(—0.00751)EXP,] AEXP (7.48)

The second approach makes use of (7.23) to find the exact change along the
estimated regression: '

AEARNS = 0.471AEXP — 0.007514EXPSQ (7.49)

In this computation, note that AEXPSQ is not equal to the square of AEXP.
It sometimes is theorized that the relation between Y and X is specified by a
higher-order polynomial, such as

Y = By + BX + B.X% + B:X° (7.50)
Clearly, our technique can be extended to bring in the values of X, X?, and X°
as three separate regressors in order to make estimates of the unknown param-
eters. These applications are rare, however, in contrast to the more common
quadratic specification.

7.5 Logarithmic Specifications™

If the regressand in a multiple regression is the logarithm of a regular variable,
then the regressors might be any combination of logarithmic, regular, and
dummy variable forms. The model might be pure log-linear, pure semilog, or
a hybrid of types.

The Demand for Money

Although the demand for money depends importantly on the level of income
because money holdings are used to finance the transactions that generate in-
come, it probably also depends on the rate of interest because money is held as
an asset, as part of wealth. In addition, even the money balances held for
transactions purposes may be interest sensitive. For both reasons, the interest
impact is theorized to be negative. Thus a multiple regression in which the
amount of money demanded is related to both the level of income and the
rate of interest seems more appropriate than the simple model proposed in
Chapter 6.

The most common specification in money demand regressions is the pure
log-linear form, because it yields constant elasticity estimates. Using the 25
annual observations from 1956 through 1980, we find

T
LNM,; = 3.759 + 0.246LNGNP; — 0.0205LNRTB; 7 1N
WA
R? = .785 SER = 0.0309

*This section is relatively difficult and can be skipped without loss of continuity.
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where M is the real quantity of money [see (6.31)], GNP is real national income,
and RTB is the interest rate on Treasury bills. As theory predicts, the income
elasticity is positive and the interest elasticity is negative. Comparing the mul-
tiple with the simple regression (6.33), we see that the estimated income elas-
ticity is somewhat greater (0.246 versus 0.215) as is the R? (.785 versus .780).

How important is the interest rate relative to the level of income? We may
directly compare the regression coefficients, because they are elasticities: a 1
percent increase in income leads to a 0.246 percent increase in the predicted

demand for money, while a 1 percent increase in the interest rate leads to a
0.0205 percent decrease. Thus the interest rate appears to be much less important
than income, but this comparison is misleading. In the short run the interest rate
1s proportionately much more variable than income: year-to-year changes of 25
percent (not percentage points!) or more often occur in the interest rate, while
changes of only 5 percent or more in income occur with roughly the same
frequency. Comparing these two hypothetical changes in RTB and GNP, we
find the resulting impact of the interest rate to be about half as much as that of
the level of income. Thus the rate of interest should be viewed as having a

moderately important impact on the demand for money.

The Earnings Function

In applied labor market research, the preferred form for earnings functions
specifies the regressand to be the logarithm of earnings. When education is the
only explanatory variable, we have a pure semilog form as in (6.39). As more
variables are taken into account the form of the function may become mixed.

For example, we consider a model in which the logarithm of earnings depends
on the level of education, the amount of experience (entered quadratically), the
logarithm of the number of months worked (to yield an elasticity), and the
person’s race and region of residence. Based on our cross-section data set, the
estimated regression is

LNEARNS, = —2.031 + 0.106ED, + 0.0501EXP,
—0.000930EXPSQ, + 0.908LNMONTHS,
—0.239DRACE, — 0.00468DNCENT, (7.52)
—0.193DSOUTH, — 0.162DWEST,

R* = 511  SER = 0.420

The impact of each coefficient is interpreted in the same way as in simpler
formulations.

An additional year of schooling increases the level of earnings by approxi-
mately 10.6 percent, which is quite close to the finding in the simple semilog
model (6.40). The level of earnings increases with the amount of experience up
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to a peak of about 27 years of experience and decreases thereafter. The elasticity
of EARNS with respect to MONTHS worked is 0.908; if the elasticity were 1.0,
then earnings would be proportional to months worked, which might be expected
on the basis of simple reasoning.

The dummy variable coefficients show the impact on the regressand of being
in the included category. We find that LNEARNS is 0.239 lower for blacks than
for whites. Being black rather than white corresponds to a unit change in DRACE
(i.e., ADRACE = 1), so the effect of being black is to change earnings by
approximately —23.9 percent. In other words, earnings are about 23.9 percent
less for blacks than for whites. Note that this estimate of the racial difference
in earnings pertains to a comparison in which all the other explanatory factors
(education, experience, months worked, and region) are held constant; it is not
an estimate of the difference between the average earnings of blacks and whites.
The coefficients on the regional dummies show that earnings are lower in all
these regions than in the Northeast, holding constant the other explanatory fac-
tors. Earnings are approximately 1/2 of 1 percent lower in the North Central
region, 19 percent lower in the South, and 16 percent lower in the West.

The R* value indicates that more than half of the variation in observed
LNEARNS has been explained by the regression, which is fairly good for this
type of regression.

7.6 Specification Questions

In our development and use of multiple regression, we have followed a con-
sistent approach in all cases. We start from the presumption that there is some
stable process determining the values of some variable. Next we set up a multiple
regression model that correctly describes the process in mathematical terms.
Finally, we use data to estimate the unknown parameters and interpret or apply
the estimated model according to our needs.

One of the difficulties with this approach is that we must correctly describe
the process in terms of a regression model. This is a very demanding require-
ment. To meet it, or at least to come close to meeting it, we need to know more
about how to specify regression models. In this section we limit ourselves to
questions relating to the selection of variables for a linear model.

The Causal Nexus

In thinking about how several variables together affect or determine another
one, it 1s natural to make a distinction between direct and indirect effects. Figure
7.6 sketches the causal linkages in a hypothetical case, with arrows indicating
the paths and directions of causation. Variable X, is directly affected by X, and
unlabeled variables. Variable X, is directly affected by X, and an unlabeled
variable, and it is indirectly affected by X, and the other unlabeled variables.
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FIGURE 7.6 The causal nexus determining Y in a hypothetical case is illustrated in this
schematic diagram. Arrows indicate the paths and directions of causation. and unlabeled
circles contain other variables. This behavioral process is properly specified by Equation
(7.53), assuming linearity. A regression model that mistakenly excludes X, or one that
mistakenly includes X, misspecifies this process, but these two types of misspecification
have very different consequences.

Variable Y is directly affected by X, and X,, and it is indirectly affected by X,
X3, and the unlabeled variables. Note that X, has both direct and indirect effects
on Y. Also, note that the disturbance u has a direct effect on Y and no linkage
at all to any of the other variables. ‘

For example, in thinking about the aggregate demand for money in macro-
economics, theory suggests that it depends directly on the level of GNP and on
some interest rate and indirectly on the Federal Reserve discount rate. Through
bank behavior and the action of financial markets, the discount rate affects the
general level of the interest rate. Through expenditure decisions, the level of
the interest rate affects GNP. And through the behavior of firms and individuals,
the interest rate and the level of GNP affect the demand for money. In a com-
monsense way, this logic is represented in Figure 7.6, with ¥ being the demand
for money, X, being the interest rate, X, being the level of GNP, and X being
the Federal Reserve discount rate.

Suppose that the correct form of the model determining Y is linear. Which
variables should be included? The answer here is that only X, and X, should be
included as explanatory variables, so that the proper model is

Yi = By + B X, + BX5 + U; (7.53)

That is, in the specification of a multiple regression model, all the variables that
have direct effects should be included, and variables that have only indirect
effects (or no effects at all) should not be included.

The validity of this general rule depends on specific notions of what ““direct’”
and “‘indirect’” mean. For our purposes, a variable has a direct effect on ¥ only
if in our general thinking about the process determining Y it is true that a change
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in the variable would lead to a change in ¥ while all other variables affecting
Y are held constant. In other words, if a variable truly has a ceteris paribus
effect on Y, then it has a direct effect. This leads to the general rule for specifying
the regression model, because each coefficient is only a ceteris paribus effect.

In the causal nexus illustrated in Figure 7.6, variable X; has only an indirect
effect. We recognize its effect as working this way: a change in the value of X,
affects X, and any change in X affects Y. There is no other path along which
X; affects Y. Thus if X, somehow remains constant there is no way for X; to
affect Y. Since X5 has no ceteris paribus effect, it does not have a direct effect
and it should not be included in the regression model. In the demand for money
example, neither firms nor individuals care about the Federal Reserve discount
rate. [t affects the demand for money only through the general interest rate. If
the general interest rate somehow remains constant, changes in the discount rate
will not affect the demand for money.

The distinction between direct and indirect effects means that we must be
especially careful in interpreting regression coefficients for variables like X,
which has both kinds. The proper interpretation of 3 is that it gives the impact
on Y of a change in X, holding constant the value of X,. This is the direct
effect. The indirect effect of X; works through consequent changes in X,. If we
knew the amount of change in X, that would be associated with the initial change
in X, we would have a basis for calculating the magnitude of the indirect effect.
However, a regression model does not provide any information about the link-
ages between or among its explanatory variables, so generally it does not provide
enough information to determine the magnitude of an indirect effect like that of
X,. Thus a regression model always tells us about the partial effects of the
explanatory variables, but it is silent on the question of total effects. In applied
research it is often true that there are some linkages between or among explan-
atory variables, and therefore careful interpretation is usually needed.

In thinking about what determines some economic outcome, sometimes it is
natural to consider a variable that has only an indirect effect, and sometimes
this indirect effect may be of special interest to us. For example, we may want
to know what effect the Federal Reserve discount rate has on the demand for
money. If the variable, like X5, is not included in the model, how can we learn
about its effect? What is needed is a second regression model that describes
how X, is determined by X, and other variables. This model and (7.53) taken
together form a recursive system of equations that can be used to analyze the
effect X; has on Y. Such a system is a special case of simultaneous-equation
models, which are discussed in Chapter 17. Until then our attention will be focused
on single-equation models, which we realize are necessarily limited in scope.

Sometimes it is difficult to know whether a variable under consideration for
inclusion in a regression model has a direct effect, only an indirect effect, or
no effect at all. Hence it is difficult to decide which variables should be included
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in the model, and it is likely that some models we see or create will be mis-
specified.

Let us return to the causal nexus illustrated in Figure 7.6. The process is
correctly described by (7.53), as explained above. Variables X, and X, are
known as relevant variables because they should be included in the regression,
and all other variables (such as X;) are known as irrelevant variables because
they should be excluded. Suppose that we have data on all the necessary vari-
ables. The estimated form of the correct model i1s

?i = :éo + BAlei + lézxzi (7.54)

In carrying out our research we might make either of two mistakes, unfortu-
nately: we might exclude a relevant variable from the regression, or we might
include an irrelevant one. What are the consequences of these mistakes?

Suppose first that we leave out a relevant variable, say X,, from the equation
and estimate just the simple regression

}A/i = Yo + ¥ X (7.53)
(v 1s lowercase gamma, the Greek ”) Here y, denotes the estimated coef-
ficient on X,. In general, the value of ¥, in (7.55) will be different from the
value of Bl in (7.54) when the regressions are estimated from the same set of
data. This is because the formulas used are different: the simple regression slope
coefficient is calculated by (5.12), and it depends only on the values of ¥ and
X ; the multiple regression slope coefficient on X, is calculated by (7.9), and it
depends on the values of X, as well as on the values of Y and X,.

In general we believe that the ,él in the estimated multiple regression provides
the best estimate of the true ceteris paribus effect of X, on Y, which is denoted
by B, in the true regression model (7.53). This idea is explored further in Chapter
13. Since ¥, is different from Bl, it makes sense to say that it should be con-
sidered a not-so-good estimate of the true effect. Mathematical analysis of the
estimating formulas shows that ¥, differs from ,é , by factors that represent the
relation between X, and X, and the relation between Y and X,. Loosely speaking,
the calculation of ¥, captures both the direct effect of X, on Y and some part of
the direct effect of X, on Y. The latter effect is captured because of the correlation
between X, and X, in the data. Hence ¥, is systematically distorted from the
true value 3,, which is only the direct effect of X, on Y.

For example, consider the earnings functions (7.15) and (6.7). In the esti-
mated multiple regression the coefficient on'ED is 0.978. In the estimated simple
regression the coefficient on ED is 0.797, which is substantially smaller. This
difference is consistent with what would be expected if the multiple regression
were the true model. To see this we note that ED and EXP are negatively
correlated (» = —.57) in the data. This means that higher-than-average ED
values tend to be accompanied by lower-than-average EXP values among the

b‘er"a ions. Since experience is estimated to have a positive direct effect
,é 0.124 in (7.15)], observations with higher-than-average values of ED
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tend to have their earnings diminished by their lower-than-average values of
EXP. Thus it would be expected that ¥, would be smaller than ,él.

Suppose now that we make the mistake of including an irrelevant variable,
say X3, in the regression specification and that we end up with

)/}i - 30 + SIXH + SZXZI' + §3X31' (756)

(6 is lowercase delta, the Greek ‘‘d’’). In comparison with (7.54), the inclusion
of the 1rrelevant variable affects the estimates of the other coefficients in the
sense that 6, #= B3,, &, # 3,, and 8y # B,. However, the effects on these esti-
mates are rather random and usually mild. The coefficient o, serves to estimate
the true partial impact of X; on Y, which is zero (because X; is irrelevant).
However, because of the randomness introduced into the data by the disturb-
ances, the actual estimated value is not likely to be zero. Hence inclusion of
the irrelevant variable can lead to misinterpretation of the true economic process.

In deciding whether or not to include a variable in a regression specification,
the consequences of these two types of mistakes must be compared. In most
cases the introduction of additional randomness into the estimation process is
less serious than the introduction of systematic distortion. Hence, including an
irrelevant variable is usually considered to be less of a problem than excluding
a relevant one. If one has good theoretical reasons for including a variable, it
is best to do so. However, this should not be taken as a suggestion to hunt for
variables with the hope that some might turn out to look good. In practice, most
researchers estimate more than one specification of the process they are studying
and then try to determine which of them is best. This judgment must be based
on a blending of economic and econometric analysis, including considerations
covered in Chapters 11 through 13.

Finally, it-is often the case that our interest is in determining just the effect
of one variable on another. For example, we might want to estimate the effect
of education on earnings but we might be unconcerned with the role of expe-
rience. It is tempting to estimate just a simple regression of earnings on education
and look at the slope coefficient. However, this is not what we are interested
in. The analysis above shows that the estimate of the slope in the simple regres-
sion is not a good estimate of the cereris paribus effect of education on earnings.
Also, it is not a good estimate of what was identified in the preceding section
as the total effect of education on earnings, because to calculate that we would
need a simultaneous-equation model.

To generalize this, even when we are interested in the effect of a particular
variable, it is necessary to specify and estimate a regression model that fully
reflects the behavior of the economic process at work. Sometimes the variables
that we are not interested in are called statistical controls. For example, we
might say that the multiple regression (7.15) estimates the effect of education
on earnings, controlling for experience. Similarly, the coefficient on DRACE in
(7.33) estimates the effect of race (i.e., the effect of being black rather than
white) on earnings, controlling for education. What all this amounts to saying
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is that the only effects that can be estimated in a single-equation, multiple
regression model are the ceteris paribus (direct) effects and that the proper way
to estimate these effects is with a correctly specified model.

Multicollinearity

In the data used to estimate a multiple regression model, it is usually the
case that there is some correlation or (more technically) some degree of linear
dependence among the explanatory variables. For example, in Figure 7.6 a case
is illustrated in which there is a direct relation between X, and X,. In other cases
there may be a correlation between explanatory variables even when they are
not connected by a behavioral relation. The general model and our method of
estimation accept this situation as valid; indeed, the absence of any relations
among the explanatory variables is a very special case that we rarely encounter
in econometrics. The main consequence of this situation, so far, has been that
we must be careful to interpret regression coefficients as direct effects and to
recognize that there may be indirect effects as well. _

In addition, when two explanatory variables have a very high correlation or
when there are some other special relations among the explanatory variables,
the situation has some unfortunate consequences for statistical inference. We
will examine these in Chapter 13. Loosely speaking, it becomes very difficult
to disentangle the separate effects of the explanatory variables on the dependent
variable. For example, suppose that aggregate consumption depends on aggre-
gate income, the Treasury bill rate, and the interest rate on consumer debt.
Because of the behavior of financial markets, there is likely to be a high cor-
relation between the two interest rates over time. One might guess that it would
be difficult to determine the effects of each interest rate separately with any
great precision because the two variables might be nearly linear transformations
of each other. A common consequence of this is that if we happen to add a few
new observations to the data set, or drop a few from it, the new regression
coefficients may be very different from the original ones.

This situation is known as multicollinearity. From the point of view of spe-
cifying the model, it does not indicate any mistake. Rather, muiticollinearity
arises from the nature of the data, and usually we have to accept it as part of
reality. Multicollinearity is common in time-series regressions, because several
of the explanatory variables may increase over time and therefore be highly
correlated.

However, consider the possibility that there is a perfect correlation (r = 1)
between a pair of explanatory variables, or (more generally) that there is a perfect
linear dependence among the explanatory variables. Technically, this is a lim-
iting case of multicollinearity, and indeed it is called perfect multicoilinearity.
In this situation, the OLS method no longer can produce estimates. The point
of difficulty may be seen in the case with two explanatory variables: the denom-
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inators in (7.9) and (7.8), which define the estimators for Bl and Bz, become
equal to zero.

Although this would seem to complicate matters for us immensely, it turns
out not to be much of a problem. In contrast to regular multicollinearity, which
is a situation that occurs naturally in data, perfect multicollinearity nearly always
is the result of making a mistake in the specification of the model. The remedy
is simple: respecify the model appropriately. To understand this, we consider
several cases in which perfect linear dependence can arise in a regression model.
These mistakes share the characteristic that they include in the specification
some variable that is not really needed or that does not bring new information
to the model; in this sense, the mistaken specification is redundant.

A very special case of perfect linear dependence occurs if an explanatory
variable, X, is a constant. In this case, the coefficient B; plays the same role as
the intercept B, in the regression specification: B, and the term 3,X; are constants
that are just added in during the determination of Y. There is no unique way for
any statistical technique to assign some of the constancy to B, and the rest to
B;X;.

Perfect linear dependence also occurs if one variable is simply a multiple of
another. For example, suppose that we are trying to explain the exports of cars
from Japan to the United States and that we include both the price of these cars
in Japan (measured in yen) and the price in the United States (measured in
dollars) among the explanatory variables. If all our observations are from a
period of fixed exchange rates during which all the dollar prices were the same
multiple of the yen prices, then the two price variables measure exactly the same
set of economic facts. It does not make sense to include them both, and because
of the linear dependence we could not.

Perfect linear dependence also occurs if some set of the explanatory variables
satisfy an additive identity. For example, suppose that we are interested in
estimating the marginal propensities to consume (mpc’s) out of labor income,
property income, and total income. We might think of regressing consumption
on these three income variables in one equation. However, since total income
equals labor income plus property income, it must be that the mpc out of total
income equals the sum of the two type-specific mpc’s. Trying to estimate three
mpc’s is redundant and therefore not necessary; since it involves a linear de-
pendence among the explanatory variables, it is also impossible.

A final case of perfect linear dependence occurs if dummy variables for all
the groups of a categorical variable are included in the regression. For example,
In our treatment of region in Section 7.3 we distinguished four groups but
included only three in the specified earnings function. This was adequate to
specify the theory behind the model, because each dummy variable coefficient
specified the difference between the estimated intercept for that group and the
intercept (3,) for the excluded group. Including the fourth dummy variable
would be redundant and would introduce a linear dependence.

As might be realized from these cases, it is quite possible to specify a model
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with perfect multicollinearity if the work is done with insufficient thought. Usy-
ally, a computer program will detect the situation and give some kind of error
message. However. because of either imprecision in the data or design of the
computational algorithm, it is possible that a computer program might not detect
the situation and it would produce some calculations. In this case, the user
would think he has an estimated regression when in fact he has nonsense.

Problems

Section 7.1

7.1

7.2

* 7.3

7.4

* 7.5

7.6

Formulate a multiple regression model showing how the quantity de-
manded of a certain product depends on both the price of the product
and the income of consumers. What are the anticipated signs of the
coefficients?

What is the graphical interpretation of the demand model estimated
from the specification in Problem 7.1?

Continuing Problem 7.2, if income is fixed at a certain amount, what
is the graphical interpretation of the relation between predicted demand
and price? How does this graph illustrate the ceteris paribus concept?

Based on Equation (7.15), what is the impact on predicted earnings of
gaining a college education (ED = 16) rather than stopping after com-
pleting high school (ED = 12)? Assume that EXP is held constant.

Consider two men of age 35. Suppose that the first has four more years
of schooling than the second and therefore has four fewer years of
working experience. Based on Equation (7.15), who has greater pre-
dicted earnings? By how much?

Show that if the covariance between X, and X, is zero, the estimator
given in Equation (7.8) is identical to the slope estimator in the simple
regression of Y on X,.

Section 7.2

7.7

7.8

7.9

7.10
7.11

Based on Equation (7.29), what is the impact on predicted consumption
of an increase in the interest rate from 5 percent to 7 percent?

Suppose that inflationary forces increase both the interest rate and the
rate of inflation by three percentage points. Based on Equation (7.29),
determine the effect of these changes on predicted consumption.

Suppose that a one-percentage-point increase in the rate of interest
causes DPI to decrease by 200 million dollars. Based on Equation
(7.29), determine the total effect of this change in the rate of interest.

Determine the values of R? for Equations (7.29) and (6.10).

Derive the relation in Equation (7.28).

i
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Section 7.3

*x 7.12

7.13
7.14

:-l

s
(8)]

7.16

7.17

7.18

Based on Equation (7.33), what is the predicted level of earnings for
a black man with 16 years of schooling? For a white man with 12
years of schooling?

Graph the estimated regression (7.33), clearly labeling all its features.

Based on Equation (7.41), determine the predicted levels of earnings
for high school graduates (ED = 12) in each of the four regions of
the country.

Suppose that you want to estimate the impact of education and marital
status on the earnings of women. If the data show three marital status
categories (single, married, and divorced), how would you set up a
regression model?

Based on Equation (7.41) and Figure 7.3, determine the coefficients
of the estimated regression of EARNS on ED and the regional dummies
if the West is the excluded region.

Does the estimated coefficient on DRACE in Equation (7.33) give the
total effect of race on earnings? Explain.

Based on Equation (7.36), determine the predicted rate of inflation in
1960 and compare this with the actual rate. Now, try to predict the
rate of inflation for 1980, and compare whatever prediction you make
with the actual rate. Explain.

Section 7.4

7.19

7.20

7.21

7.22

Based on Equation (7.46), what is the effect on the predicted earnings
of a person with 25 years of experience gaining one more year? What
about a person with 35 years of experience?

Based on Equation (7.46), determine the effect on predicted earnings
of a five-year increase in experience for a worker already having 20
years of experience. Do this first using an approximation based on the
slope of the implied relation and then using an exact calculation in the

Ay oo

estimated regression.

Verify that the peak in earnings in Figure 7.5 occurs at about 31.4
years of experience.

Suppose that we have data on a factory’s average cost of production
and the amount of output in different periods. Specify a regression
model that could estimate a U-shaped average cost curve.

Suppose that the quantity demanded of a certain product depends on
its price and consumers’ income. Formulate a constant-elasticity



146
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* 7.25

7.26

7.27
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regression model for estimating this demand relation. What are the
anticipated signs of the estimated elasticities?

In a cross-section context, suppose that output depends on labor and
capital inputs. Formulate a regression model for estimating the output
elasticities of labor and capital.

In a time-series context, suppose that ‘‘disembodied technical
progress’” leads the output yielded by all combinations of capital and
labor inputs to grow at a fixed rate per year. Assuming constant output
elasticities for labor and capital, formulate a regression model for es-
timating the rate of disembodied technical progress.

Modity the model formulated in Problem 7.25 to take account of the

effect of *‘energy restrictions’ that prevailed during three years. Ex-
plain clearly the econometric assumption underlying this modification.

In the earnings function estimated as Equation (7.52), would it make
sense to have all the regressors in logarithmic form? Explain.

Section 7.6

7.28

7.29

7.30

7.31

7.32

7.33

Supposing that the rate of inflation affects the interest rate, and making
any other economic assumptions that seem appropriate, illustrate the
causal nexus determining aggregate consumption as estimated in Equa-
tion (7.29). Where could the Federal Reserve discount rate enter?

Suppose that a properly specified earnings function includes ED, EXP,
and DRACE as explanatory variables. Illustrate the causal nexus de-
termining earnings and explain the linkages.

Compare the estimated effect of education in Equations (7.33) and
(6.7) from the point of view of possible misspecification.

Suppose that we wish to estimate the effect of being a union member
on workers’ earnings, using cross-section data. Specify a regression
model that would be appropriate for estimating this effect. What theory
Or assumptions are required to make it appropriate?

Consider the Phillips curve model in Equation (7.36). Could this be
estimated using data just for 1965 through 1970? Explain.

Suppose that the fourth dummy variable DNEAST were added to the
regression specification in Equation (7.41) and that a computer pro-
vided ‘‘estimates.’’ Try to interpret all the coefficients.



