Simple Regression:
Theory

As previewed in Chapter 1, regression analysis is a technique for estimating the
values of the structural coefﬁc1ems in a model of an economic process. In this
chapter and the next we discuss simple regression, which applies to models
involving just two variables. In Chapter 7 we discuss multiple regression, which
applies to models that are more complex.

The discussion in this chapter is limited to the theory and mechanics of
estimating a simple regression model of regular form. In the next chapter we
apply this theory in a variety of cases, and we see how the estimates and
measures developed here are put into practice.

5.1 Specification of the Model

The econometric use of simple regression starts from the theory or presumption
that there is some true relation between two variables. In economics a relation
is usually based on behavior, as in the case of a consumption function, but
sometimes the relation is based on technology, as in the case of a production
function. For simplicity we refer to either type as a behavioral relation.

In technical discussion we think of such a relation as being an economic
process that can be described very concretelv in mathematlcal terms. As an

nalogy. it helps to think of some engin ocess. with an input and an
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72 ' : Ch. 5 / Simple Regression: Theory

output. The input and output are observable, but the operations of the process
itself are not.

Suppose that we have data for n observations on two variables, ¥ and X, that
we believe are related in such a way that we would say that Y is determined by
X. Our thinking is that there is some process occurring in which a value of X
is fed in and a value for Y is produced. If n values of X are fed in one at a time,
n corresponding values for ¥ are determined one at a time. The »n values of X
and Y are all observable, and they can be collected as a set of data.

Two aspects of this process should be noted. First, X is the only identifiable
and observable variable that affects Y; it is the only variable that feeds into the
process. By explicit exclusion from the discussion, other variables that might
be measured for each observation are understood to play no direct role in the
determination of Y. Second, the values of X are taken as given. The economic
process under consideration does not affect those values and it plays no role in
their determination. In addition, we make no effort to understand why X takes
on whatever values it does. Our interest is in how the value of Y is related to
the value of X for any observation. ‘

We move toward statistical analysis by making a more concrete specification
of the process by which Y is determined; this specification is known as the
simple regression model. We theorize that the value of variable Y for each
observation is determined by the equation.

Y, = By + BX, + y (5.1)

In this regression model, Y is called the dependent variable, and X is called the
explanatory variable (sometimes X is called the independent variable). In the
model, 3, and 3, are parameters that have fixed values throughout (3 is lower-
case ‘‘beta,’’ the Greek ‘‘b’’); they are called the coefficients of the regression
model. The term ; is called the disturbance.

The disturbance u; is considered to be an unobservable random term that does
not depend on the value of X,. The disturbances are meant to represent pure
chance factors in the determination of ¥. Among these factors there may be one
that is best described as luck. Also, we might believe that Y is affected by a
host of minor factors that we cannot identify and whose combined impact is
indistinguishable from pure chance. Finally, we recognize possible measurement
error in Y (but we presume that there is no measurement error in X). For any
particular observation, u,; can be positive or negative, small or large. Overall,
the average disturbance is anticipated to be close to zero, but only by coincidence
would it be exactly zero in any given set of data.

For example, consider the process by which families determine their annual
saving. Economic theory suggests that saving depends mostly on income. Let-
ting Y be family saving and X be family income, (5.1) is a simple model of
family saving behavior in which different families are the observations. The
model does not explain the level of income of each family; it takes this as given.
The parameter 3, is the saving (probably negative) of families with zero income,
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and B, is the increase in saving resulting from a unit increase in family income
(i.e., B, is the marginal propensity to save).

Based on the simple regression specification (5.1), we can decompose each
Y; value into a systematic component 8, + f3,X; and a random component U;.
The value of the systematic component is called the expected value of Y for
each observation:

E[Y] = Bo+ BX, (5.2)

This concept will be given a precise statistical meaning in Chapter 11, but for
now it seems fairly intuitive: given (5.1), it is the value that ¥, would take on
if the disturbance were equal to zero. This decomposition of each Y, value into
its systematic and random components can be compactly rewritten as

— ElY] + u, (5.3)

The model specified in (5.1) is represented graphically in Figure 5.1. The
systematic part of relation between Y and X is graphed as the line

E[Y] = By + BX (5.4)
which is called the true regression line. We consider only a specific set of n
observations whose X values are somehow given and whose Y values are deter-

mined according to (5.1). The resulting data points are plotted.

Following (5.3), the value Y, for a single observation can be decomposed
vertically into the distance up to a point on the true regression line and the
distance from that point to the observation. The decomposition is shown ex-
plicitly for two observations. For the first, which has the values X, and Y, for

Y} (X1, ) (X3, E[Y3])

Y

ElY] =By + 81X

X, X

FIGURE 5.1 For each observation, the value Y, can be decomposed into two parts: the
systematic part E[Y;] (which equals 8, + B,X;). and the disturbance u;. The systematic
part is given by the height of the true regression line above the observation’s X value. and
the disturbance is given by the distance from the point on the regression line to the data
point. The disturbance is positive for the first observation and negative for the second.



74 ‘ Ch. 5 / Simple Regression: Theory

the two variables, the plotted point is shown and the X and Y values are traced
to the axes. Directly above the value X, on the X axis we find a point on the
true regression line; its vertical value is E[Y,], and this is traced over to the YV
axis. The vertical distance from E[Y,] to Y, is u,, which is shown also. The
situation for the second observation (X5, Y,) is the same except that the data
point lies below the true regression line, so the disturbance u, is negative.

In summary, the simple regression model illustrated in Figure 5.1 is a spec-
ification of the theoretical process that we use to describe the relation between

two observable variables. For each observation the value X, is determined outside
the process. Given this X;, the value Y; is determined by (5.1). It will be con-
venient to say that the process produces the data on Y and X, even though the
X values are determined outside.

Our theory is that the simple regression model actually reflects the way some
economic behavior works. Surely this is a very simple model of how the values
of a variable are determined: most economic variables systematically depend on
more than one other variable, and that is why multiple regression is usually
more appropriate. However, there are many instances in which simple regression
is quite reasonable, and it is a useful tool of econometrics. Also, the presumption
that the relation is strictly linear is not so constraining as it might seem. In some
cases, we might well accept a linear model if we believe that the true relation
1s approximately linear. More important, we see in Chapter 6 that some truly
nonlinear relations can be transformed into linear ones. In these cases we treat
the transformed relation just as we treat the model specified in (5.1).

5.2 Estimation of the Model

When we have a set of data on ¥ and X that we presume was generated by a
process described by (5.1), the values of B, and B, are unknown. Our interest
focuses on estimating the values of these parameters, based on the data we have.

Our job now is pictured in Figure 5.2. Temporarily ignore the line drawn
there. The data we have are plotted, and these points represent all that we can
observe. To say, as above, that we presume or theorize that the data were
generated by the process (5.1) means that we presume that there is some unob-
servable true regression line underlying the data. Figure 5.1, which illustrates
the theory, explicitly shows a true regression line. Careful comparison of Figures
5.1 and 5.2 shows that the data points are exactly the same in both. In other
words, Figure 5.1 presents our theory of how the data in Figure 5.2 were
generated. Hence the true regression line in Figure 5.1 underlies the data in
Figure 5.2. Of course, we do not see it there, because it is not observable. But

use the data to estimate the parameters of the line.
The task of estimating the parameters B, and B, of the unobservable true
regression line is carried out by drawing or fitting an actual line through the
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FIGURE 5.2 The estimated regression line is based on the data on Y and X, as plotted.
It serves as an estimate of the true regression line in Figure 5.1, but it is generally
different from it. For each observation, the value ¥, can be decomposed into two parts: the
fitted value Y (which equals 8, + B,X,), and the residual e;. The ordinary least squares
criterion is to minimize the sum of the squares of these residuals.

data. The intercept of this actual line is denoted by ,éo and it serves as our

estimate of 3y, the intercept of the true regression line. Similarly, the slope of

the actual line is denoted by 131 and it serves as our estimate of (3,. (The

circumflex looks hke a hat, SO ,81 1s conventionally read as ‘‘beta-one-hat.’”)
Suppose that the BO and B ; we end up with correspond to the line

= ,80 + :BIX (5.5)

drawn through the data in Figure 5.2. This is called the estimated regression
line or the fitted regression line. For any data point such as (X;, ¥;), this line
decomposes the total value of Y, into two parts: ﬁo + B X,, which is the height
of the line above X, and ¢;, which is the vertical distance from the line to the
data point. The first part is the fitted or predicted value for Y:

= B, + BiX, (5.6)
The second part, ¢,, is called the residual, or the error of fit or prediction:

e, =Y — ¥, - (5.7)
Clearly,

Y, =Y, + e (5.8)

How can we determine the parameters Bo and B1 of the estimated regression
line? It seems reasonable to try to find the line that best fits the scatter of data.
There are a variety of alternative techniques that might be used, and we consider
several before focusing on the one we adopt.

One possibility is just to draw a line that seems to fit pretty well and accept
that. In some cases this might be satisfactory, but it is not very precise. Two
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different persons analyzing the same data would undoubtedly come up with
different estimates of the parameters, and we would have no basis for deciding
which were better. _

Another possibility is to measure the perpendicular distance from each point
to the fitted line and then develop a method that calculates values for the pa-
rameters so as to minimize some overall measure of these distances. The results
might be called ‘‘perpendicular estimators.’’

Instead of dealing with the perpendicular distances, another possibility is to
measure the vertical distances from each point to the fitted line. These distances
are the residuals, defined by (5.7). We might try to find a line for which the
sum of the residuals is zero. It turns out that many lines satisfy this criterion,
and some of them definitely do not fit very well. Alternatively, we might try to
minimize the sum of the absolute values of the residuals. This is reasonable but
somewhat awkward.

The standard approach in much practical work, which is the approach we
adopt, is called the method of ordinary least squares (OLS). With this method,
the criterion for being the best fit is that the line must make the sum of the
squared residuals (SSR) as small as possible:

OLS criterion: minimize SSR = >, ¢2 (5.9)

i=1

Based on this criterion, we can develop mathematical rules or formulas for
calculating ,@0 and [AB’].

Putting this more formally, suppose that we have n observations on ¥ and
X, as illustrated in Figure 5.2. Any line drawn through the data will be of the
form (5.5), and associated with particular f%o and ,[AB, values are a set of residuals,
¢;, that are determined by

e =Y — Bo - BIXI' (5.10)
Consider the sum of the squared residuals around a fitted line:
2,6 = 2 (Y, = By — Xy (5.11)
i=1 i=1

For a given set of data the X, and Y, are specific numbers, and our interest is in
finding the Bo and LA%] values that minimize this expression.

A calculus derivation, given in the appendix to this chapter, leads us to the
following:
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and
Bo=7Y - BX (5.13)

These are known as the OLS estimators of 3, and B,: they are the formulas for
calculatmg the BI and ,BO of the estimated regression hne In practice we cal-
culate [31 first, and then using that value we calculate BO Whenever we use
these estimators we can be confident of getting the best-fitting line.

In the derivation of the OLS estimators, the only special assumption made

is that not all the X values are identical. If this were the case, the denominator

in (5.12) would be zero and Bl would be undefined. Graphically, this would be
a case in which all the data points lie along a vertical line.

Three properties of the least squares fit always hold true. First, the sum of
the residuals is exactly zero: % ¢; = 0. Thus the average error of fit is also zero:
¢ = 0. This property holds true even though the sum of the squared residuals,
which has been minimized, is some positive amount. Interestingly, the least
squares line is not the only line for which the associated sum of residuals is
zero; one could construct a very poor fitting line for which this property also
holds.

Second, the fitted regression line goes through the point of means, which is
the point (X, Y). This property makes it easy to graph the Iine: one point on
the estimated line is its intercept with the vertical axis (0, BO) and now we know
that a second point is (X, ¥). We can graph the line through these two points.
It should be noted that usually none of the observations in the data lie at the
point of means, although this could happen by coincidence. :

Third, there is zero correlation between the residuals and the explanatory
variable. We already know that the average residual is zero. This third property
assures us that for observations with X above X , there i1s no tendency for the
residuals to average differently from zero—and similarly for X < X. To see
what this means, think of all the data points as lying close to some straight line.
The zero correlation between e and X assures us that the OLS fit cuts through
the points rather than across them.

As an example of computation, consider the five observations on Y and X in
Table 5.1. These are the first five observations on SAVING (Y) and INCOME
(X) from our cross-section data set, with the values rounded to one decimal
position for simplicity. As discussed above, the simple regression model (5.1)
can be taken as a theoretical statement describing family saving behavior. The
calculations are shown in the table, and the estimated regression is reported as

Y, = —0.0386 + 0.0863X, (5.14)
The data are plotted in a scatter diagram in Figure 5.3, and the fitted regression
line is drawn in.
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TABLE 5.1 Calculation of Regression Estimates

1) (2) 3 (4) )

Y, X, X, - X X, — X)? X, — X)Y,
0.0 1.9 —5.04 25.4016 0.0
0.9 12.4 5.46 29.8116 4.914
0.4 6.4 ~0.54 0.2916 —-0.216
1.2 7.0 0.06 0.0036 0.072
0.3 7.0 0.06 0.0036 0.018
8 34.7 0.0 55.5120 4.788

X =3X/n=2347/5 = 694

Y=3Y/n=28/5=056

By = [ &, — X)Y]/IZ (X, — X)?] = 4.788/55.512 = 0.0863

=Y — BX = 0.56 — (0.0863)(6.94) = —0.0386

5.3 Interpretation of the Regression

The econometric approach to analyzing data is based on the theory that there is
some stable process of economic behavior that underlies the data we have. We
use the data to learn about the process. In our work, the systematic part of the
process is specified by the true regression, and calculating the best -fitting line
through the data yields the estimated regression.

Consider how the actual estimated regression line compares with the theo-
retical true regression line. Suppose that we have a set of n observations on Y
and X that were generated by an economic process correctly described by the
simple regression model (5.1). The technique of ordinary least squares provides

1.5 Y = —0.0386 + 0.0863X

1.0+

0.5+

Y

4 6 8 10 12 X

Y
FIGURE 5.3 The scatter diagram displays the five observations on SAVING (Y) and
INCOME (X) from Table 5.1, and the estimated regression line is drawn in. Compare this
with Figure 3.4.
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a method for calculating estimates of B, and B,. Letting asterisks denote the
actually computed values in a set of data, the estimates are 8 and B7.

How is ,é:; related to 3, and how is ,éf related to B,? We might hope at first
that 85 = B, and 8% = B,, so that we would have discovered the true values,
but this is unlikely ever to occur. We could hardly expect to learn the precise
value of the coefficients in the process (5.1) on the basis of a limited set of data
generated by the process. |

This thinking is reflected in Figure 5.4. Suppose that we are dealing with
three observations, having actual X values X,, X,, and X;. We do not explore
why the observations take on these values; even in theory we accept them as
given. We theorize that the actual Y values for the observations are produced
by the process (5.1). Accordingly, in Figure 5.4 we graph the true regression
line, which is the systematic part of the process, and we also plot the actual
data points resulting from the process. Given these data, the estimated regression
line is determined by the OLS estimators, and it is drawn in the figure also.

For the data in Figure 5.4, the estimated line differs from the theoretical true
regression line because of the particular pattern taken on by the disturbances:
u, 18 large and positive, while u, and u; are relatively small. This causes the
estimated regression line to have a flatter slope than the true one, in this case.
Note that while X ¢, = O for the OLS fit, it is usually true that the disturbances
do not sum exactly to zero because they reflect uncontrolled random factors.

Y
EY] =B+ B X
° }A/:,éo'*'BIX

[
e e
P

T T T

X, X- X, X

p——

FIGURE 5.4 For the given set of X values. the Y values are determined around the true
regression line as in Figure 5.1, with a large positive disturbance «, in this case. For these
data on Y and X, the estimated regression line is also shown. as in Figure 5.2. The
difference between the true regression and the estimated regression arises from the
particular pattern of values taken on by the disturbances.
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In general, the differences between an estimated regression line and the un-
derlying true regression line arise from the particular pattern of values that the
disturbances happen to take on. The differences between ,éo and By, and between
,é? and B,, are estimation errors. Since the true values of Bo and B3, are unknown,
we cannot determine the size of these estimation errors in any particular case.
Of course, we always hope that the errors are small, but we can never be sure
that they are. (In Part IV we develop methods of statistical inference that permit
us to assess how large or small the estimation errors might be.)

What if we apply this method of estimating a regression line to data from
some process that is not correctly described by the simple regression model?
For example, suppose that the true process relating Y to X is

Y, = XPr + 4, (5.15)

We will explore specifications similar to this in Chapter 6, but the essential
point here is that the systematic part of the relation between Y and X is not
linear. If we apply our OLS methods directly to estimate a regular linear regres-
sion, our results clearly cannot provide us with a correct understanding of the
true process determining Y. In general, the usefulness and validity of a regression
model depends on its being an accurate specification of the process being
examined.

To foreshadow the analysis that we carry out in various applications in Chap-
ter 6, let us look at the estimated regression (5.14) of family saving on family
income. Remember that as an example of computation we used only five ob-
servations, so that these numerical results can hardly be considered seriously.

Just as the theoretical true regression line underlying the data determines the
systematic part of saving for a family with a given income, the estimated regres-
sion line can be used to make predictions of saving for a family with some
specified income. A family whose income is 8 thousand dollars has a predicted
saving of
Y, = —0.0386 + (0.0863)(8.0) = 0.6518 (5.16)

{

thousand dollars (i.e., about $652). Notice that in predicting a level for the
dependent variable we are finding the height of the estimated regression line
corresponding to a specific level of X.

The estimated intercept and slope values are just that: estimates of the cor-
responding parameters of the behavioral relation. Special attention focuses on
the slope here, because the economics of the behavior is that 8, is the marginal
propensity to save. Our estimate of this parameter is 0.0863, and in a serious
study we would hope that this is not too far from the true value.

Looking at the estimated slope, we see that if a family’s income were to
increase by 1 thousand dollars (i.e.. AX = 1) its predicted saving would increase
by 0.0863 thousand dollars (1.e., $86.30). This is a basic interpretation that we
can make without any computation. By contrast. if a family’s income were to
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increase by $2500 (i.e., AX = 2.5), we use our knowledge of slopes (see the
appendix to Chapter 1) to compute

AY = 0.08634X = (0.0863)(2.5) = 0.21575 (5.17)

thousand dollars. That is, predicted saving increases by about $216. Notice that
the intercept plays no role in a computation like this. ‘

Looking at the estimated intercept, we see that if a family’s income were
zero, 1ts predicted saving would be —0.0386 thousand dollars (i.e., minus
$38.60). Although this may seem odd at first, it does make economic sense:
many families with temporarily low incomes do have some accumuiated wealth
that they would spend if their income were zero, and decreases in wealth are
measured as negative saving.

5.4 Measures of Goodness of Fit

The technique of ordinary least squares guarantees that the estimated regression
line is the best-fitting line that can be drawn through the data, in the sense that
it has the smallest possible sum of squared residuals. Although it is the best-
fitting line, whether we would judge that it fits well or not so well depends on
the data: if the data in the scatterplot are widely dispersed, no line can fit very
well; if the data seem to lie close to some line, a good-fitting line can be found.
In this section we develop two statistics that allow us to quantify how well the
regression fits.

Starting from a set of data on Y and X, the estimated regression line yields

a set of fitted values, or predictions, for the actual ¥, values. These are given
by

Y, = By + BX, (5.18)

The associated errors of fit are given by the residuals

A

{ ! 4

These residuals serve as the basis for our two measures of goodness of fit.

The Standard Error of the Regression, SER

The n residuals constitute a data variable. ¢, that can be described by the
methods of Chapter 3. As noted above, it is a property of OLS
the mean residual is always zero: ¢ = 0. The standard deviation of the residuals
(5,) will be some positive number, and its usual interpretation will still be valid:
S, measures the typical deviation of e from its mean. without regard to sign.

Since ¢ = 0, each deviation (¢, — @) is the same as the value of the variable
(e¢;) itself. Hence the standard deviation can be interpreted here as the typical
value of the variable, without regard to sign. Thus S, could serve as an inter-

estimation that
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esting measure of how well the regression fits the data: it answers the question,
““What is the typical error of fit?’” To satisfy some purposes discussed in Chapter
11, the actual measure we adopt is a slight modification of §,.

The standard error of regression (SER), which is sometimes called the
“‘standard error of estimate,’’ is defined by

SER = .|+ (5.20)

‘yn 2

and 1t gives the typical error of fit. (Notice that if n — 2 were replaced by
n — 1, the expression on the right-hand side would equal S,.) As with the
standard deviation, the denominator in this expression is identified as the number
of degrees of freedom.

To 1llustrate how the SER is computed, we continue with the previous ex-
ample dealing with family saving behavior. Table 5.2 starts with the same data
onY and X as Table 5.1. For each observation, separately, the fitted or predicted
value Y, is determined from the estimated regression (5.14) by substituting in
the X; value. Then, again for each observation separately, the residual (5.19) is
calculated and squared. The sum of these squares is 2 e7. The SER is then
calculated directly according to (5.20).

The units of measurement of the SER are always the same as those of the
dependent Varlable Y because each residual is equal to the actual value Y, minus
the fitted value Y In this case the SER is 0.416 thousand dollars, because family
saving (Y) is measured in those units. We interpret this value as thé typical error
of fit for the regression of family saving on family income.

To assess its magnitude, the SER is usually compared with some value of
the dependent variable. If we are making one prediction, a comparison of the
SER with the Y value suggests how much in error the prediction might be. (A
probabilistic analysis of prediction errors is given in Chapter 13.) If we are

TABLE 5.2 Cdalculation of R? and SER

(1) @ 3) @ () © _ (7
Y, X; Y, €; ei: Y, - Y Y, - Y)?
0.0 1.9 0.126 —0.125 0.0157 —0.56 0.3136
0.9 12.4 1.031 —0.131 0.0171 0.34 0.1156
0.4 6.4 0.513 —0.113 0.0129 —0.16 0.0256
1.2 7.0 0.565 0.635 0.4030 0.64 0.4096
0.3 7.0 0.565 —0.265 0.0703 -0.26 0.0676
0.0 0.5190 0.0 0.9320
RP=1—Se/[S(y, = YyP] =1 — 0.5190/0.9320 = 0.443
SER = VX ¢ Jut o — L) = \V/OSIQG/?) = 0.416
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considering the overall goodness of fit of the regression, a comparison of the
SER with the mean of Y is useful. For example, in the saving regression, the
SER is $416 and Y is $560; the typical error of fit is relatively large, indicating
a fairly poor fit. However, simple comparisons with the mean are sometimes
misleading; if the same residuals had been obtained with families having greater
income and saving levels (and thus greater }_’), the SER would not seem so
“relatively large.”’ ‘

As evident in Table 5.2 and Figure 5.3, one of the residuals is much larger
than the others in absolute value. This, combined with the small size of the
sample, leads the SER to be larger than four of the five residuals. (The mean
absolute residual is 0.254 here, which is substantially smaller than the SER.)
Because of this, we might hesitate before accepting the conclusion that the fit
is “‘fairly poor.”’

In practical applications of simple regression, we sometimes end up esti-
mating two or more regressions having the same dependent variable. For ex-
ample, if we have two sets of data on the same variables, we might estimate
two separate regressions of ¥ on X. Or if we have three variables in single data
set, we might estimate one regression of Y on X and another regression of ¥ on
Z. In comparing the two regressions, it makes sense to say that the one with
the smaller SER has the better fit.

By contrast, it generally does not make sense to compare the SERs of two
regressions when they have different dependent variables. This can lead to ii-
logical comparisons. For example, if we have three variables in a single data
set, we might estimate one regression of ¥ on X and another regression of Z on
X. In each regression the computed SER measures the typical error of fit. But
if ¥ is measured in dollars and Z is measured in percentage points, we clearly
cannot compare the SERs to judge which regression has the better fit.

The Coefficient of Determination, R?

The second measure we develop to quantify how well the estimated regression
line fits the data yields a pure, dimensionless number. Like the magnitude of
the correlation, this measure varies between zero and 1, with a higher value
indicating a better fit. We go through several steps of a formal development
because these are useful for understanding the interpretation we use.

Making reference to Figure 5.5. it should be clear that for any observa-
tion |,

V=V = =D+, = F) = =V +e  (520)

This is a decomposition, showing that for each observation the total deviation

of ¥, from the mean is equal to the deviation of the regression’s predicted value

from the mean plus the regression’s error of fit. In other words, the total devia-

ton of Y, from Y is equal to the deviation explained by the regression plus the

unexplained deviation.
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FIGURE 5.5 For any observation, the total deviation of Y; from the mean, (¥, — 1—/),
can be decomposed into two parts: the unexplained deviation (¥, — f’,), which is just the
residual e;, and the explained deviation ()7,. — Y’). The coefficient of determination, R2, is
defined as the ratio of an overall measure of the explained deviations to an overall
measure of the total deviations. The standard error of the regression, SER, is a measure of
the typical unexplained deviation—that is, it is a measure of the typical error of fit, e,.

If we square the leftmost and rightmost portions of (5.21), we get
Y, - YP =¥, = Y)2 + & + 2e(Y, = Y) (5.22)
and if we add up the n equations like (5.22) that hold for each i, we get
S -V =00 —Y)P2+ > +2> e, —Y) (523

It can be shown that the last term on the right-hand side of (5.23) is equal to
zero, so that what remains 1s

S, Y2 =>F Y+ > el (5.24)

All the terms in this equation are positive or zero because they are sums of
squares. The expression on the left-hand side is called the fotal variation of Y,
because it is the sum of squares of the total deviations identified above. Simi-
larly, the first expression on the right-hand side is called the explained variation
and the second is called the unexplained variation. Thus, as a consequence of
the original decomposition illustrated in Figure 5.5, we can say that the total
variation of Y is equal to the variation that is explained by the regression plus
the unexplained variation.

Rearranging and dividing by 2 (¥, — Y)?, we get
2 2
e > =)
1 = (5.25)

The right-hand side of this equation is the ratio of the explained variation to the
total variation. The numerator and the denominator are positive, and since the
numerator is a component of the denominator the ratio can take on values only
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between zero and 1. This ratio could serve as a measure of goodness of fit, and
we adopt it for that purpose. The left-hand side of (5.25) is often easier to
compute. In part for that reason, we use the left-hand side in the definition but
give it the interpretation that applies directly to the right-hand side.

The coefficient of determination, which is usually denoted by R> and read
as ‘“‘R-squared,’’ is defined by

[}

n

R* =1 —
>, — Y2
i=1

o~
9]
o]
)
S~

Based on the analysis of (5.25), the general form of our interpretation of R? is
that it measures ‘‘the proportion of the total variation of Y that is explained by
the regression.”” Since the regression model explains, or predicts, the values of
Y on the basis of the given values of X, we might say instead that R? measures
“‘the proportion of the total variation of Y that is explained by X.”’

The computation of R? is illustrated in Table 5.2. In addition to calculating
2 e, which was done for the SER, we need to calculate the total variation of
Y, 2 (Y; — Y)?, as an intermediate step. Finding R* = .443, we say that the
regression explains about 44 percent of the variation of Y.

In the appendix to this chapter it is proved that R* is equal to the square of
r, the correlation between X and Y. Thus these two measures serve in the same
way to quantify how well the estimated regression line fits the data. In econo-
metric analysis we usually talk in terms of R? rather than r, partly because: of
its useful interpretation in terms of explaining the total variation of Y.

The R? is a zero-to-1 dimensionless measure of goodness of fit, and knowing
the numerical value in any case helps us conjure up an image of the scatterplot
in our minds. An R? of .443 is usually associated with a scatterplot in which
the data are fairly dispersed around the estimated regression. In our example,
we might qualify this description by noting that one residual is much larger than
the others.

Our interpretation of the magnitude of R? also depends on the nature of the
economic process being analyzed. The R’ is often high in time-series work
because Y and X often have a common trend. By contrast, the R? tends to be
lower in cross-section work because there is no trend and because of the sub-
stantial natural variation in individual behavior. If R? = .443 were rcported for

macroeconomic time-series saving function, it would be j
experienced researchers expect a regression of aggregate saving on income to
have an R* of .95 or higher. However, an R> of .443 for a large-sample, cross-
section saving function would be quite high compared with similar studies, and
the regression would be judged to have a relatively good fit.

The R* can be used in a limited way to compare the fits of two or more

regressions. In comparing regressions. it is natural to note which one is the most
~ — -~

(9]

fat}



86 , Ch. 5 / Simple Regression: Theory

successful in explaining the variation in its dependent variable. However, these
comparisons must be made with care, especially when the regressions have
different dependent variables. A better fit does not necessarily mean a better
regression.

For any given set of data and the corresponding estimated regression, R* and
SER are useful measures of goodness of fit. It is common to report both along
with the estimated regression in a display like

Y, = —0.0386 + 0.0863X,
R?> = 443  SER = 0.416

The R? tells us that about 44 percent of the variation in family saving is explained
by the regression. The SER tells us that the typical error of fit for saving 1is
0.416 thousand dollars (i.e., $416). In Chapter 11 we develop additional cal-
culations in regression estimation that will be added to this reporting style.

5.5 The Effects of Linear Transformation

The units in which we measure variables are arbitrarily chosen. For example,
GNP for 1980 might be measured as 1,480,700,000,000 dollars, 1,480.7 billion
dollars, or 1.4807 trillion dollars. What impact does this choice have on our
regression results? We can show that the economic sense of the fitted regression
does not depend on the units of measurement, even though the actual regression
coefficients do. :

Suppose that we start with data on ¥ and X. The most common form of units
adjustment involves multiplying a variable by a constant. We view this as trans-
forming the original variables, ¥ and X, into new variables. vy and x, according
to

For example, if ¥ is the unemployment rate expressed as a proportion of the
labor force and if b, equals 100, vy is the unemployment rate expressed in
percentage points.

Using the original data, let the estimated regression of ¥ on X be denoted by

Y, = By + B.X, (5.29)
And using the transformed data, let the estimated regression of v on x be denoted
by

Vi T Yo T VY (5.30)
The choice of notation here makes it clear that the estimated intercepts may be
different in the two regressions and that the estimated slopes may be different
also. (Note that y is lowercase **gamma,”’ the Greek e

The question is: what are the rclations between o and B, and between
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v, and ,é[? In other words, how do the new coefficients compare with the old
ones? To answer this, we start with the formulas for the OLS estimators giving
¥, and ¥, in terms of y and x, then substitute for y and x what they are in terms
of Y and X, and finally rearrange until a useful statement is found. Our results
from Chapter 3 regarding transformations of variables are important here. We

see that
. 2 (x; — Xy,
[ 2 (x; — })2
>, (b X; — bX)bY
bb, > X, — XY,
(B Y (X, — X)?
b). .
- b_ /31
and
’?O =y — '}A’l)_f
_ b, . _
= b)Y — b—’BI (b.X)
_ T (5.32)
= b(Y — B, X)
= b_\'BAO

Collecting these results, we see that when ¥ and X are transformed by mul-
tiplicative constants as specified in (5.28), the new coefficient estimates are
related to the original ones by (5.31) and (5.32).

For example, the saving (¥) and income (X) data used in this chapter are
measured in thousands of dollars. If both variables were transformed to express
the amounts in dollars, the new variables would be

y, = 1000Y, and x, = 1000X, (5.33)

§, = —38.6 + 0.0863x, (5.34)

That is, the slope is unchanged but the new intercept is 1000 times greater than
the old one. By contrast, if saving were transformed to dollars while income
remained in the original form, the regression of saving on income would be

$. = —38.6 + 86.3X, (5.35)
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The R? in these regressions would be the same as in (5.27), but in this case the
original SER would be multiplied by a factor of 1000.

The question of units choice can be generalized somewhat to the follow-
ing problem. Suppose that we have data on Y and X and have estimated the
regression

Y. = B + BiX, (5.36)

Suppose now that we create a new variable, y, from Y according to the linear
transformation

Y, = a, + by\,Y,- (5.37)
and a new variable, x, according to

X, = a, + b.X, (5.38)

{

(Note that a, and b, need not be related to a, and b, at all; the notation is used
Just to economize on symbols.) If we estimate an OLS regression of y on x, we

get
}91' = '?’o + ’?l'xi (5.39)

and we ask: How do the new coefficients compare with the original ones?
Derivations similar to those above lead to

b, .
Y, = }9— B, (5.40)
and
N A a.\'b\* A
Yo = avv + bv\'BO - b B] (541)

Ry

For example, suppose that after-tax income (x) 1s related to before-tax income
(X), both expressed in thousands of dollars, by

X =2 + 0.75X. (5.42)

Comparing this to (5.38), we have a, = 2 and b, = 0.75. Suppose now that
we are interested in the relation between saving and after-tax income. The saving

concept is unchanged: y, = Y,, so a, = 0 and b, = 1. Without estimating
another regression, we can determine from (5.27) that the regression of saving
on after-tax income is
) (2)(1) |
= 10 + (I)—0.0386) — ——= (0.0863
v, [ (1) ) 0.75 ( )J
[ 1
+ | —== (0.0863) | «x, 5.43
L0.75( ) J " 549

= —0.269 + 0.115x,
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The R* of the original and new regressions would be the same; in this case the
SER is also unchanged because the units of measurement for saving, the de-
pendent variable, are unchanged.

Understanding the effects of units adjustment and linear transformation 1is
useful for us in two ways. First, given an estimated regression, we are able to
restate it to make more sensible reports without actually computing new esti-
mates. For example, it generally does not make sense to report a regression of
saving on income with one variable measured in dollars and the other in thou-
sands of dollars.

Second, this analysis makes us aware that the magnitude of estimated regres-
sion coefficients depend in part on the units of measurement that happen to have
been used in the data. Without knowing what the units are in any particular
regression, finding a coefficient equal to 3400.0 is no more interesting or im-
portant than finding 0.00034 as the estimated value.

Problems

Section 5.1

5.1 In a simple linear regression model of market demand involving the
quantity demanded and the price of a product, which variable is the
dependent one and which is the explanatory one? Draw a figure show-
ing the true regression line and plot some of the observations that might
be observed. ‘

* 5.2 In the simple regression model illustrated in Figure 5.1, is it possible
that all the actual Y, values would lie above the true regression line?
Explain.

5.3 Suppose that the quantity demanded in a market depends on the price
of the product and the income of consumers. Would a simple regression
model explaining the quantity demanded be appropriate? Could income
be considered part of the disturbance?

5.4 Suppose that the true regression line is E[Y] = 2 + 3X. Determine
the value of the disturbance for an observation having (X;, Y;) values
(3, 8). Determine the disturbance for an observation (6, 21).

Cartinam £ 2
WM ArLINAL V.

5.5 In an OLS regression estimation, is it possible that all the actual Y,
values would lie above the estimated regression line? Explain.
* 5.6 Construct a diagram to show a case for which X ¢, = 0 around a line
that is clearly not the best-fitting line.
5.7 In the following table Y stands for EARNS and X stands for £D from
the cross-section data set, and the data are for observations 26 through



90

5.8

5.9

5.10

Ch. 5§ / Simple Regression: Theory

30 (with EARNS rounded). Plot Y and X in a scatter diagram, with Y
on the vertical axis.

Y X

12.0 !
3.6
9.6
3.7
6.5 I

N WO o

Based on the data of Problem 5.7, estimate the coefficients of the OLS
regression of ¥ on X and graph the estimated regression line through
the scatter diagram of Problem 5.7. (Use a table format to organize
your calculations.)

For a data set of three observations whose (X;, Y;) values are (10, 5),
(8, 7), and (12, 9), estimate the regression of ¥ on X. Calculate the
sum of the residuals and the covariance between ¢ and X. Verify that
the regression goes through the point of means.

Calculate the sum of squared residuals for the estimated regression in
Problem 5.9. Now, add 0.5 to the intercept to get another line through
the data, and calculate the sum of squared residuals for this line. Which
of the two calculated SSRs is smaller? Why?

Section 5.3

* S5.11

5.12

Draw a scatter diagram of the first five observations on EARNS and
ED from the cross-section data set, and roughly draw in the best-fitting
line. How does comparing this to the graph from Problem 5.8 illustrate
the existence of estimation errors?

Based on the estimated regression (5.14), determine the predicted sav-
ing of a family whose income is 25 thousand dollars. For what level
of income would predicted saving be zero?

Section 5.4

* 5.13
5.14

5.15

th
-
(=

Based on Problem 5.8, compute the values of R? and SER.

OLS finds the best-fitting line, while R? measures the goodness of fit.
Does this mean that R® will always be high if the OLS technique is
used?

Prove that the third term in Equation (5.23) is equal to zero. [Hint: At

one stage use the fact that 2 ¢, X, = 0, which stems from Equation
(5.48).]

Compute the values of R®> and SER for the regression estimated in
Problem 5.9.

In Figure 5.3 and Table 5.2, the observation with the large residual
could be called an *‘outlier.”” Recompute the estimated regression, the
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R*, and the SER after deleting this outlier (i.e., using only four ob-
servations) and compare the results to those gathered in Equation
(5.27).

Section 5.5

*» 5.18 Based on Problems 5.7 and 5.8, suppose that EARNS is transformed
into dollars (from thousands of dollars). What would be the new es-
timated regression of earnings on ED?

5.19 Based on the saving function presented in Equation (5.27), what would
be the estimated regression of saving on income if income were trans-
formed to dollars but saving remained in the original form?

5.20 Derive the relations presented as Equations (5.40) and (5.41).

Appendix

5.21 Prove that Equations (5.54) and (5.53) are equivalent. [Hint: Start from
the numerator in (5.53).]

5.22 Show why Equation (5.48) is equivalent to stating that e and X are
uncorrelated.

* 5.23 Consider a regression model in which B, is specified to be zero:
Y, = B,X; + u;. Derive the OLS estimator for 3,.

APPENDIX”

Derivation of the OLS Estimators

The derivation of the OLS estimators is a standard calculus minimization
problem in which the objective function to be minimized is the sum of squared
residuals [see (5.9)]. Given a set of data, all the values like ¥, and X, are fixed
numbers. Our task is to find the values of BO and ,8] that make SSR as small as

possible. In this context, ,80 and ,81 are variables (arguments of the function)
while the Y’s and X’s are constants

LS VSN aic o LS.

The sum of squared residuals is given by

1 I

> e = 2 (Y = By — B (5.44)
=1 /

To find the values of ,éo and él that minimize this expression, we take the
partial derivatives of (5.44) with respect to 3, and B, and set them equal to zero:

1

d ~ A
N 2 2 v a2
e ,‘4-)
dB() Lu ~0 Py

9
| — o
J - U

LJ]
\_/

“This appendix is relatively difficult and can be skipped without loss of continuity.
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and
; [E ¥ = By — 3,x,.)2] =0 (5.46)
9B,
Evaluating these partial derivatives gives us |
22— B — BX,) =0 (5.47)
—22( — By — BX)X, = 0 (5.48)

Next, we divide each equation by —2, leaving each side equal to zero, and then
rearrange terms to get

2 Y =nfy + B 2 X, (5.49)
2 Y,X, = :éo 2 X, + :él Z Xiz (5.50)

This pair of equations is a set of two simultaneous equations in which
By and B, are unknown and all the X, and Y, values are known.
A convenient way to solve these equations is to solve (5.49) for

l§o={2 Yi*élzxz} /n (5.51)
and substitute this for ,éo in (5.50). That equation then can be solved to yield

L _P2XY - XX DY,
| n>y X - <Z X)7

For theoretical and computational convenience, we note that this expression can
be arranged in various ways, including

. 2 & =X, - )

(5.52)

= — 5.53
1 2 (X, N X)z ( )
and
. > X = Xy,
5.54
Y - X (9

By =Y - BX (5.55)

p—

d find instead an expression that gives
nd Y values, but this is not useful.
= 0 follows from (5.47) and that e and X are uncor-

which is the same as (5.13). We cou
A . . 1
e §

- f Vv
By solely in terms of X

The {)roperty that ¥ ¢,

1 1

related follows from (5.48).
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Equivalence of R? and (r)?

The value of R? is exactly equal to the square of r, the correlation between
X and Y. To see this, first note that '

I

2 (f}i - }_/)2 = 2 (Bo + /élXi - ,éo - /él)?)z

=1 =1

=2 [B,(X; — X)]? (5.56)

= (él)z 2 X, — 5—()2

i=1

Now,
> (¥, — 1)
Rz — ljl
Y, = Y)
i=1
B2 =X DK - X)
D A R R 2

S & -0 -N| 2« - X7 |
> X — X)? > (Y, = Y (5.57)

[2 X, — X)(¥, — 17)]
> X =X, — Y)Y
B [ > X - X, - V) ]

L /2 (X, — X)? \/2 v, — )7)2J

= (r)?

Since we showed earlier that the maximum value of R? is | and the minimum

is 0, the equivalence of R? and (r)* proves that the maximum value of r is 1
and the minimum is — 1.






