Simple Regression:
Application

The simple regression model developed in Chapter 5 can be used to estimate
the structural (behavioral) relation between two variables whenever we believe
that the model accurately describes the process by which Y is determined. Al-
though this model is too simple to describe most economic relations, it has many
useful applications. In all these, the task of estimating the unknown coefficients
is the same as in the general case, and the technique needs no further elaboration.
What remains is to interpret the estimated model, and the first two sections of
this chapter focus on that problem.

When we believe that the true process is more complex than the basic model,
there are several paths open to us. If the true relation involves two variables in
a nonlinear fashion, it is sometimes possible to transform the relation into a
linear one and then apply the basic techniques already developed. Much of this
chapter is devoted to exploring these possibilities. If more than one variable
plays a systematic role in the determination of Y, we are led to multiple regres-
sion (Chapter 7).

6.1 Interpretation of the Coefficienis

As presented in Chapter 5, the simple regression model

Yi = By + BX, + u, (6.1)

94
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is a theoretical statement of the process by which the value of Y for each
observation is determined on the basis of the given value of X for that obser-
vation. The systematic part of the relation is specified by the true regression line

ElY] = By + BiX (6.2)

where E[Y] denotes the expected value of Y associated with any particular value
of X. This is graphed in Figure 6.1, which illustrates that £[Y] is a linear function
of X.

When we have data on ¥ and X, an estimated regression line

Y =By + BX (6.3)

can be determined by the method of ordinary least squares. This line is the
empirical counterpart of the true regression line, and it serves as an estimated
model of the systematic relation between Y and X. We should keep in mind,
however, that even in the best of circumstances this model is only an estimate
of the true relation—in the sense that Bo and ,él are only estimates of B, and
B,. Figure 6.1 illustrates an estimated regression line that (hypothetically) is
based on data produced by the process described by the true regression line in
the same figure. As explained in Section 5.3, the differences between the esti-
mated and true regressions arise from the particular pattern of disturbances in
the data set.

After estimation, our interest moves on to interpreting and using the estimated
model. For this we blend together economic reasoning and some mathematical
analysis. Since (6.3) is the equation of a straight line, the mathematics is easy.

Y 4
EY] = B+ B X
?:Bo*‘/ngv
P
-
X

FIGURE 6.1 The systematic part of the simple regression model is specified by the true
regression line, whose intercept is 3, and whose slope is [3,. An estimated regression line
fit to data produced by this process has an intercept of 8, and a slope of f3,.
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The parameter ﬁo in the estimated regression is called the intercept because
it is the intercept of the estimated regression line with the vertical axis drawn
through X = 0. Strictly speaking, the intercept gives the predicted value of Y
for an observation with X = 0. In some cases this interpretation is of special
interest. However, in many cases such an interpretation does not make economic
sense. For example, with an aggregate consumption function it would be absurd
to use a real-world model to predict what consumption would be if income were
equal to zero: in all probability, either everyone would starve or chaos would
reign as inventories of food and products were consumed.

The parameter ,é | is called the slope coefficient. Based on the simple analytics
of a straight line (see the appendix to Chapter 1), we know that the change in
predicted Y that would be associated with any particular change in X is given
by

AY = B, AX (6.4)

In this context, a ‘‘change in X’ that is economically interesting might be the
difference between the values of X for two observations or it might be a hy-
pothetical change in the value of X for a particular observation. In either case,
we are considering moving from one point to another along the estimated regres-
sion line.
Based on (6.4), we can see that if X changes by 1, ¥ will change by ,é’l. That
is,
if AX =1, then A = §, (6.5)

This simple relation is the basis of our usual interpretation of a slope coefficient:
,é, is the change in ¥ that results from a unit change in X. Meaning this, we
say that ,BA} is the impact of X on ¥. (Note that a ““unit change in X’° means
AX = 1; this is different from a change in the units of measurement for X.)

When we believe that the form of the model correctly specifies the true
process relating Y to X, which is a belief that we usually hold, we can recast
our interpretations in terms of the true parameters. For example, since ,él is an
estimate of the true 8,, we might say that ,é, 1s an estimate of the impact of X
on E[Y].

A semantic problem arises in discussing the impact of the explanatory vari-
able in a regression. It is tempting to use the word ““significant’” when the
impact is big or noteworthy in an economic sense. Unfortunately, this use of
““significant’’ in statistical discussion has been preempted by a technical meaning
that is different from ordinary usage. As set out in Chapter 12, the meaning of
““significant’ in a basic hypothesis test is simply “‘not zero,”” and to use the
word to discuss the importance of the impact of one variable on another can

lead only to confusion

Finally, since ,é] estimates the impact of X on Y, it is tempting to jump to
the conclusion that the larger is the é, value in a regression the more important
is X in explaining Y. This conclusion is valid when thinking about possible
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values for the coefficient in a particular regression, but it is invalid when thinking
about a comparison of coefficients in different regressions. Indeed, as shown in
Section 5.5, the magnitude of a coefficient is affected by the units of measure-
ment of the variables in the data. Therefore, the magnitude by itself does not
indicate the importance of the coefficient.

6.2 The Earnings Function and the
Consumption Function

In this section we present two examples of regular simple regression that serve
as small case studies of econometric research. In both cases we start with a
theory or belief about the form of the relation. The actual calculations are not
shown, because they are standard applications of the methods of Chapter 5 and
because we nearly always rely on a computer to carry them out anyway. The
emphasis 1s on interpreting and using the estimated model.

The Earnings Function

We start with a simple theory that labor markets serve to determine persons’
earnings according to their educational attainment as specified in

EARNS, = B, + B.ED; + u, (6.6)

using mnemonic variable names instead of Y and X. The theory might be based
on the idea that education enhances productivity, which is rewarded in labor
markets with greater earnings. Alternatively, it might be based on the ideas that
educational attainment mainly certifies the existence of potential abilities, and
that earnings are based on this certification. In either case, (6.6) is an appropriate
model.

Using the 100 observations in our cross-section data set, in which EARNS
measures earnings in thousands of dollars and ED measures years of schooling,
and applying (5.12) and (5.13) to calculate the OLS coefficients, we find that

/\
EARNS;, = —1.315 + 0.797ED;, 6.7)
R?> = .285 SER = 4.361
The estimated coefficient on ED is 8% = 0.797, which means that the esti-

mated labor market reward for an extra year of schooling is 0.797 thousand
dollars greater annual earnings. Put more simply, we have estimated that the
impact of education on earnings is $797 greater annual earnings for each addi-
tional year of schooling. Is this an important effect? Certainly it is not trivial.
Given the relative ease of acquiring another year of education and taking into
account the magnitude of this impact in comparison with the variation in earnings
that exists among the observations, most economists (and educators) would say
that education has a fairly important effect on earnings in this model. (We point
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out that the fact that even though 0.797 looks like a small number, this alone
tells us nothing about the importance of the coefficient.)

The intercept Bf = —1.315 tells us that the predicted earnings of a person
with no schooling is negative $1315. Since labor markets do not offer negative
earnings, this unrealistic finding needs careful attention. One possibility is that
a worker with no schooling would indeed have negative productivity in a job,
and so he would not be hired. In this case the estimated model is in accord with
the true behavior of labor markets, but the naive interpretation of the intercept
is misleading because it attempts to apply the model for a value of ED that is
not appropriate. Another possibility is that workers with no schooling do indeed
have positive earnings in labor markets, but that the particular outcomes for the
disturbances in our data have led to a negative estimate for the intercept even
though the true value is positive. Yet another possibility is that our model (6.6)
is incorrect—the true form might be nonlinear, with positive earnings for work-
ers with no education—and that the attempt to fit a straight line to the data has
led to an unrealistic result. It turns out that in our data the minimum value for
ED is 2 years, for which the estimated model predicts positive earnings. Thus
we might proceed with some faith in the model and its estimation. (However,
the issue unresolved, and we note that our attempt to make a careful interpre-
tation of an estimated coefficient has led us to recognize the need for more
research.)

The R* indicates that only about 30 percent of the variation in earnings among
the observations is explained by the level of educational attainment. This may
seem low, but it is similar to R? values found in other cross-section studies of
earnings. '

The relatively poor fit is also evidenced by the SER, which is 4.361 thousand
dollars. To interpret this, the magnitude must be compared to values of EARNS,
which is the dependent variable. In the data, EARNS ranges from 0.750 to
30.000 and has a mean of 7.911. Taking the mean value as a standard for
comparison, the typical error of fit indeed seems quite large.

Using (6.7) we can predict that the earnings in 1963 of a college graduate
(ED = 16) who was a male head of family aged 25-54 would have been

—
EARNS = —1.315 + (0.797)(16) = 11.437 (6.8)

thousand dollars. The typical error associated with an out-of-sample prediction
such as this turns out to be even larger than the standard error of the regression,
SER. (In Chapter 13 we see how these typical prediction errors are calculated.)

It should be noted that our data pertain only to male heads of families in the
25-54 age range. Making predictions or assessing the impact of education on
the basis of this estimated earnings function is appropriate only with reference
to this particular group. We do not expect that it will adequately predict women’s
earnings, for example. Also, the dollar magnitudes are based on 1963 labor
market conditions.
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The Consumption Function

As discussed in Chapter 1, an aggregate consumption function based on
simplified Keynesian ideas can be specified as

CON; = B, + B\DPI;, + u; (6.9)

where CON; is aggregate personal consumption expenditure in year i, and DP/,
is aggregate disposable personal income in the same year. B3, is interpreted as
the marginal propensity to consume, because (6.9) implies that if DPI increases
by 1 dollar, then E[CON] will increase by 3, dollars (assuming that both vari-
ables are measured in the same units).

Using the 25 observations for the years 1956-1980 in our time-series data
set, in which CON and DPI are both measured in billions of 1972 dollars, and

calculating the ordinary least squares estimates, we find that

TON, = 0.568 + 0.907DPI,

i

R? = .997 SER = 8.935

(6.10)

The estimated marginal propensity to consume (,éf) is 0.907, which is consistent
with Keynes’ conjecture. The fit is extraordinarily good: the R* of .997 means
that nearly 100 percent of the variation in CON over this period is explained by
the regression (i.e., is explained by variation in DPI). Although it seems that
we might have discovered some fundamental economic law, judgment must be
reserved on this question. Very high R? values are common in time-series studies
because most variables tend to increase over time, and therefore high correlations
will exist among them even if cause-and-effect relations are absent or weak.
Also, other specifications of the process determining consumption behavior may
be preferred in economic research.

We can use (6.10) to predict how high CON will be when DP/ is 1.2 trillion
dollars:

- —
CON = 0.568 + (0.907)(1200) = 1089 (6.11)

billion dollars. Also, if DPI were to decrease by 20 billion dollars (from what-

ever level it might be at), the estimated model predicts a change in consumption
of

N
ACON = (0.907)(—20) = —18.14 (6.12)

billion dollars. Note that the estimated intercept plays no role in a calculation
like this.

6.3 Aliernative Model Specifications

As already noted, the appropriateness of using the regular simple regression
model is contingent on its being an accurate description of the particular process
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being studied. Most important, the model requires that for each observation the
expected value of Y be a linear function of the value of X. In the earnings
function and consumption function, this was taken to be an appropriate speci-
fication of the relations.

In other cases, however, theory and evidence may lead us to believe that the
relation between two variables is definitely not linear, or that it is not contem-
poraneous. Thus the regular model will not be an accurate description of the
process, and using it will be inappropriate. (This statement might be tempered
with the notion that if the relation is approximately described by the regular
model, its use can be considered appropriate.)

In this section and the next we see how some structural relations that do not
conform to the regular model can be respecified in such a way that OLS can be
applied. The key to this is realizing that the ¥ and X in the regular model (6.1)
need not be the interesting variables themselves, but that they can be variables
that are constructed from the interesting variables. To reduce confusion, it is
useful to refer to Y as the regressand rather than the dependent variable and to
X as the regressor rather than the explanatory (or independent) variable.

Ratios of Variables

Part of the controversy surrounding the Keynesian consumption theory fo-
cused on the average propensity to consume (APC), which is defined as
CON; ,
APC; = DPI, (6.13)
One tradition and body of evidence viewed the consumption—income ratio as an
economic constant that did not change over time. By contrast, Keynes conjec-
tured that the APC would decline over time.

One way to look at the data and provide evidence on this question begins by
assuming that the average propensity to consume is a simple linear function of
time. The variables CON and DPI from the time-series data set are used to
construct a new variable, APC, defined by (6.13). A regression model is speci-
fied and then estimated using APC as the regressand and the time trend 7" as the
regressor. With n = 25, the results are

T
APC, = 0.911 — 0.000213T

i i (6.14)
R? = .021 SER = 0.011
Sometimes regressions like this one are reported as
(TON,\
= 0.911 — 0.0002137, (6.15)
DPI,

to emphasize that the regressand is constructed as a ratio of two variables.
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These results show that the average propensity to consume decreases over
time, seemingly in conformity with the Keynesian view. Each year, the APC is
estimated to decrease by about 0.000213. Is this a lot or a little? In the middle
year of the sample (1968, with 7 = 13) the predicted APC is 0.911 —
(0.000213)(13) = 0.908, and the annual decrease (0.000213) is very small
compared with this. The annual decrease seems quite unimportant. Hence some
persons might be inclined to say that for all practical purposes the average
propensity to consume is constant.

The Reciprocal Specification

Often economic theory predicts that the systematic relation between two
variables is nonlinear. If the nonlinearity is judged to be not too severe, it might
be reasonable to proceed with the regular simple regression model as an ap-
proximation. However, this is not usually advisable because it inhibits our in-
vestigating the nonlinear features. An alternative approach involves finding a
nonlinear mathematical form to specify a relation that is appropriate for the
economic process and that is transformable into a linear relation.

One possibility is the reciprocal relation

B

Y = By +
Bo +

(6.16)
The geometry of the reciprocal relation is illustrated in the left side of Figure
6.2. Y may be positive or negative. We focus only on cases in which all the X
values are positive; although the reciprocal relation is defined for negative X
values, it is rarely used in these cases. If 3, is negative, the slope of the relation
between Y and X is positive and it becomes flatter as X increases. Y never rises
above the value ¥ = f,, and in fact it never quite reaches it. If 3, is zero, Y
is constant. If B, is positive, the slope of the relation between Y and X is negative
and becomes flatter as X increases. Y never reaches or falls below the value
Y = B,.

Now consider a new variable, XINV, that is equal to the reciprocal (i.e.,
inverse) of X: XINV = 1/X. It follows from (6.16) that Y is a linear function
of XINV:

Y = B, + BXINV (6.17)

The relation between Y and XINVV is illustrated on the right side of Figure 6.2,
with three cases depending on the value of 3,. We see that the specific form of
the nonlinear relation (6.16) implies a linear relation between Y and XINV.
The potential for applying this bit of mathematical analysis to econometric
regression modeling should be clear. If we have a theory or belief that the
systematic part of the relation between Y and X is reciprocal, like (6.16), this
theory can be reexpressed to state that Y is linearly related to X/NV. Further,
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Y=Bo+% Y = By + By XINV
v 4 Y4
Bo
a
(a) 8, <0 .
X XINV
YA Y 'y
Bl =0
(b 8o
X XINV
Y4 Yt
B >0
(©
Bo
X - - XINV

FIGURE 6.2 The geometry of the reciprocal relation depends on the sign of B,. Except
when 8, = 0, Y is a nonlinear function of X; as X increases, Y increases (38, < 0) or
decreases (8, > 0) and approaches the asymptotic limit 3,,. Although Y is a nonlinear
function of X, it is a linear function of the inverse of X—which is denoted by XINV.

the parameters B, and B, of the linear relation (between Y and XINV) are the
same as the parameters of the reciprocal relation (between Y and X). If we add
a disturbance term to (6.17), we have the specification of a regression model.

For example, before the combined high inflation and unemployment of the
1970s, the systematic part of the Phillips curve relation between the rate of
inflation and the unemployment rate was considered to be nonlinear and resemble
the left side of Figure 6.2c. Hence a reciprocal relation between inflation and
unemployment was considered to be an appropriate form, and we use 15 annual
observations (1956—-1970) to estimate the model.

The regressand is simply RINF/. The regressor is a new variable, equal to
the inverse of UPCT:

]
UINV, =

— 6.18
‘T UPCT, (6.15)
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The estimated regression is

—_—
RINFI, = —1.984 + 22.234UINY,

R?> = .549 SER = 0.956

(6.19)

Commonly, results such as these are reported simply with 1/UPCT in place of
UINV, but we wish to stress that the actual regressor is a transformed variable.
The results of regressions involving transformed variables require care in

11 1 A T‘QO(‘. Q ]
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the right side of Figure 6.2c. However, the economic interpretation is best
carried out in terms of the implied relation between predicted RINFI and UPCT,
which resembles the left side of Figure 6.2¢. Looking first at the estimated
intercept, we see that as UPCT increases, RINF] decreases and approaches a
lower limit of —1.984 percent. The sign of the estimated slope tells us the
general shape (here, like the left side of Figure 6.2¢), but the magnitude is
difficult to interpret. To understand the meaning of this coefficient, it is useful
to make predictions for the rate of inflation at various levels of UPCT. For
example, if UPCT = 6 percent, the predicted RINFI is —1.984 +
(22.234)(1/6) = 1.72 percent; if UPCT = 3 percent, the predicted RINF/ is
—1.984 + (22.234)(1/3) = 5.43 percent. The estimated regression is con-
sistent with earlier findings on the Phillips curve.

The restriction of the data to observations from the period 1956—1970 reflects
the fundamental econometric requirement that all the data used to estimate a
model must have been generated from the same economic process. We believe
that after 1970 expectations of continuing inflation began to get built into the
behavior of the economy in a way that they had not been in the earlier period.
In other words, the behavioral pattern changed. This means that although the
model (6.19) may be quite appropriate for the earlier period, it cannot be used
to make predictions after 1970. For this later period, a more complicated model
1s required.

Lagged Variables and First Differences

The regular simple regression model is specified so that Y, is related to X,.
In a time-series context, this means that the values of Y and X are to be measured
in the same time period. However, economic behavior is dynamic, and an effect
may occur substantially later than its cause. For example, a firm’s investment
decision may be made at one point in time but the machines might not be
produced and delivered until a year or more later. Similarly, people may budget
their consumption expenditures on the basis of last year’s income rather than
its current level. In these cases the explanatory variable is said to determine the
dependent variable with a lag.
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If there is a one-period lag between cause and effect, it is natural to formulate
a simple regression model as

Y, :'.Bo + BX, . + u (6.20)

where X;_, is the value of X one period before i. In other words, the current
(ith period) value of Y depends on the one-period lagged value of X and the
current disturbance. This formulation appears to complicate the estimation of
the coefficients, because the paired Y,;, X;_, values are no longer a row in a
rectangular data matrix and the OLS estimators are no longer appropriately
defined.

However, the creation of a new regressor straightens out these difficulties.
Table 6.1 illustrates the procedure. The table shows some data on two variables
Y and X. A new regressor is created in such a way that each of its values is
equal to the previous period’s value of X. Appropriately, this new regressor is
called XLAG. In period i, the value XLAG, is equal to X,_,, and

Y, = By + BXLAG, + u; (6.21)

has the same meaning as (6.20). In this specification the earlier difficulties
disappear, and the coefficients can be estimated in the ordinary way. It should
be noted that in the construction of XLAG, no value could be assigned to XLAG,
because X, is not in the data set. Hence in estimating (6.21) we must ignore
the first observation in the data, and use only 2 through x.

For example, using observations 2 through 25 of the time-series data set, an
aggregate consumption function embodying the theory that DPI affects CON
with a one-period lag is estimated as '

T
CON; = 10.913 + 0.923DPILAG;
R? = .993 SER = 14.953

o~
(@)Y
[\
(o]
S’

The results differ slightly from the contemporaneous model (6.10). The standard
error of regression, which measures the typical error of fit, is about 50 percent
greater here, but the R? is only slightly lower. Although the original specification
provides a better fit, we do not have a statistical basis yet for choosing between

TABLE 6.1 Construction of the Lag Regressor

i Y X XLAG

I 405.4 446.2 —

2 413.8 455.5 446.2

3 418.0 460.7 455.5
i—- 1 Y X, XLAG, |

XLAG,
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the two. This lag specification is so common and easy to understand that reports
of equations like (6.22) often are written with DP/, | rather than DPILAG; on
the right-hand side, because no confusion is likely to occur.

Another common specification in time-series modeling involves letting the
regressand or regressor, or both, be the first difference of a variable. The first
difference is a constructed variable whose value in any period is equal to the
value of the original variable in that period minus its value in the previous
period. For example, starting with data on GNP, the new variable AGNP is
defined by

AGNP; = GNP, — GNP,_, (6.23)

In other words, the first difference for GNP is equal to GNP minus the lagged
value of GNP, for each and every observation. (Note that if we have n obser-
vations on GNP, the values of AGNP are defined only for observations 2 through
n.)

The accelerator theory of aggregate investment behavior is based on the idea
that changes in the level of GNP are the main determinant of the level of
investment spending by business. This leads to a simple regression model

INV, = B, + B, AGNP; + u, (6.24)

where INV is real gross private domestic investment. Using observations 2
through 25 from the time-series data set in Chapter 2, the estimated model 1s

INV, = 136.6 + 0.691 AGNP,

(6.25)
R*> = .175 SER = 40.4 :

The positive intercept gives the estimated amount of investment (136.6 billion
dollars) that would occur if GNP were not growing (i.e., if AGNP = 0); this
might reflect investment to replace depreciated assets. The estimated slope is
substantially smaller than predicted by simple accelerator theory, which suggests
that (6.24) might not be an appropriate model of investment behavior.

6.4 Logarithmic Functional Forms™

As seen in Section 6.3, in some cases a transformation of a nonlinear relation
leads to an equivalent linear relation involving newly created variables. The
benefit of this is that a linear regression model can be used to estimate the
parameters. The focus of our interest and interpretation, however, remains with
the original relation.

A special class of nonlinear relations become linear when they are trans-
formed with logarithms. The wide range of nonlinearities that can be captured

*This section is relatively ditficult and can be skipped without loss of continuity.
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and the associated ease of interpretation make these specifications very popular
with applied econometricians. These relations and their transformations are ex-
plored in this section, and the appendix to this chapter contains the derivations
of some of the interpretations given here.

The Log-Linear Specification
Suppose that we think the exact relation between Y and X is
Y = ePoxh (6.26)

where e stands for any positive constant. If we take the natural logarithm of
both sides of the equation, we obtain

InY =B, + B, InX (6.27)

This is known as the log-linear relation between Y and X because it is linear in
the logarithms of the original variables. Since (6.27) involves the logarithm of
Y and X, the relation is applicable only if all the values of ¥ and X are positive:
none can be zero, none can be negative.

The log-linear relation is particularly useful because of the variety of graph-
ical shapes that it can represent. Figure 6.3 shows the geometry of (6.26) and
its logarithmic transformation (6.27) when B, takes on different values. If 3, is
negative, the relation between Y and X is downward sloping and its slope be-
comes flatter as X increases. If B, is zero, then Y is just a constant. If B, 1s
between O and 1, then the relation between Y and X extends out from the origin
and slopes upward, but the slope becomes flatter as X increases. If B, is equal
to 1, the relation between Y and X passes through the origin and is linear; Y is
proportional to X. If B, is greater than 1, the relation between ¥ and X extends
out from the origin and slopes upward, but the slope becomes steeper as X
increases. In all cases, B, is a factor that affects all possible observations equi-
proportionally.

Perhaps the most attractive feature of this model is that B, can be directly
interpreted as the elasticity of Y with respect to X. In economics, this elasticity
is equal to the proportional change in Y divided by the proportional change in
X resulting from a movement along the relation between Y and X. As shown in
the appendix to this chapter, the specification underlying (6.26) and (6.27) is
such that the elasticity is the same everywhere along the whole function when
the considered changes in Y and X are small. That is, the point elasticity is
constant, and it is exactly equal to B;:

_dr)y

= AX/X (6.28)

B
where dY and dX can be thought of as small changes (4’s) in Y and X, respec-
tively. Hence the log-linear relation is sometimes called the constant-elasticity
relation. |
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FIGURE 6.3 The geomeltry of the Iog-—linear relation depends on the sign of B,. When Y
decreases as X increases [case (a). with 8, < 0], it is concave upward. When Y increases
with X (with 3, > 0). the concavity may be upward or downward, depending on the
magnitude of B,. Although Y is a nonlinear function of X, In Y is a linear function of
In X: the slope of that line is the same (3, as in the original formulation. The parameter 3,
is the elasticity of ¥ with respect to X.
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When the elasticity of the relation is known, it provides the basis for cal-
culating the effect on Y of changes in X. Let “pc of Y7 be the proportionate
change in ¥, which might otherwise be denoted by AY/Y. The definition of
elasticity implies that

pc of ¥ = (B))(pc of X) _ (6.29)

For example, if the elasticity (3,) equals 1.2, a 5 percent change in X will lead
to a 6 percent change in Y. [The ““pc’’ should be entered into (6.29) as a regular
proportion—not in percentage points; that is, it should be entered like .05, not
5. However, it is conventional to verbalize a regular proportion like .05 as ‘5
percent.”” It might be noted that entering the “‘pc’’ in percentage points will not
lead to an error in (6.29), but doing so in similar formulas will.]

So far we have focused on an exact theoretical relation between variables Y
and X. It is easy to see that the log-linear relation can be taken as the basis of

a simple regression model

InY, = By + B, InX, + u, (6.30)

where the regressand is In ¥ and the regressor 1s In X. This econometric model
is appropriate if the process determining Y is such that the expected value of
In Y is a linear function of In X.

For example, consider the aggregate demand for money in the United States.
Good economics leads us to specify the model in real terms, so we construct
the variable M to be the real quantity of money (see Section 2.3), based on
variables in our data set:

M,
i = 3o (100) (6.31)

Economic theory suggests that it is reasonable to specify the constant-elasticity
form

In M, = B, + B, In GNP, + u, (6.32)

as the regression model. It is important to realize that the regressand and re-
gressor of the model are transformed variables: they are the logarithms of M
and GNP, respectively. For notational convenience we let the names of the new
variables be LNM and LNGNP.
Using the 25 observations in the time-series data set, the estimated regression
is
T

LNM, = 3.948 + 0.215LNGNP,

R = 780 SER = 0.0305

(6.33)

Since 0 << 8% < |, we see that the implied relation between M and GNP re-
sembles the left side of Figure 6.3c. The estimated income elasticity of the
demand for money is 0.215; in other words, if GNP increases by 1 percent, we
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predict that the demand for money will increase by 0.215 percent. Using (6.29) -
we see that a 5 percent increase in GNP leads to a 1.075 percent increase in
predicted M. However, when we start to consider large changes in GNP or M,
the calculation based on the point elasticity holds only approximately.

Now, suppose that we wish to predict the demand for money when GNP =
1000. First, we calculate In (1000) = 6.908. Then we determine the predicted
value of In M: 3.948 + (0.215)(6.908) = 5.433. Finally, we take the antilog
of this number, yielding a predicted demand for money of 228.8 billion dollars.
(A refinement of this procedure is suggested in Section 16.2.)

The constant elasticity model is probably the second most useful specification
for a simple regression, after the regular linear form. This is because economic
theory often leads us to characterize relations in elasticity terms, and the model
allows for a simple approach to estimating ‘‘the elasticity.”’ It should be noted
that the presumption that the elasticity is constant throughout the relation is a
strong one—but so is the corresponding assumption that the slope is constant
in a regular linear model.

The Semilog Specification
Suppose that we think the exact relation between Y and X is
Y = ePoefPiX (6.34)
If we take the natural logarithm of both sides of the equation, we obtain
InY = B, + B, X (6.35)

This is known as the semilog relation because only part of it is specified in
logarithmic form. (Another variant, which we do not consider, specifies Y as a
function of In X.) .

The geometry of (6.34) and (6.35) is illustrated in Figure 6.4. X may take
on positive or negative values, but ¥ must be positive if In Y is to be defined.
If B, is negative, Y decreases as X increases and its slope becomes flatter. If
B1 = 0, Y is constant. If B8, is positive, Y increases as X increases and its slope
becomes steeper.

Part of the usefulness of the semilog relation derives from the ease of inter-
pretation of B,. Thinking of dY¥ and dX as small changes resulting from move-
ment along the relation between Y and X, it is shown in the appendix to this
chapter that

704

B, = X (6.36)

That is, B, can be interpreted as the proportional change in Y that results from
a unit change in X. This implies that
pcof ¥ = B, AX (6.37)

when the changes in X and Y are small.
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Y = (ePoyePX) InY =By + B X
Y4 In Y4
B <0
a——
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X X
Y 3 Iny A
51 =0
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(© '
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FIGURE 6.4 The geometry of the semilog relation depends on the sign of 3,. Except
when B, = 0, Y is a nonlinear function of X. As X increases, Y decreases (3, < 0) or
increases (B, > 0), and the relation is concave upward in both cases. Although Y is a
nonlinear function of X, In Y is a linear function of X, the slope of that line is the same 3,

as in the original formulation. The parameter 3, can be interpreted as the proportional
change in Y that results from a unit change in X.

Moving toward econometrics, it is easy to see that the exact relation (6.35)
can be taken as the basis of a simple regression model

InY, = B, + BX, + u (6.38)

where the regressand is In Y and the regressor 1s simply X.

One application of the semilog specification is to the human capital theory
of earnings determination. In one derivation, the theory states that the systematic
relation between earnings and educational attainment is

In EARNS = B, + B,ED (6.39)

Adding a disturbance term yields a semilog regression model. The estimate of
this earnings function, based on the 100 observations in our cross-section data
set, 1S
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A
LNEARNS; = 0.673 + 0.107ED,
R?> = .405 SER = 0.446

(6.40)

Since ,@1 > 0, we see that the implied relation between EARNS and ED resem-
bles the left side of Figure 6.4c. On the basis of this estimation we predict that
each additional year of schooling increases earnings approximately by the pro-
portion 0.107, or 10.7 percent. In other words, the new level of earnings will
be 1.107 times the original level. Using (6.37), a three-year increase in schooling
would lead earnings to increase approximately by the proportion 0.321, or 32.1
percent.

It is interesting to compare this with the result of (6.7), which estimates that
the impact of each additional year of schooling is to increase annual earnings
by $797. Which model is more appropriate for the earnings function? On the
basis of general principles, we might surmise that the semilog model is appro-
priate when theory suggests that equal-sized increases in X lead to equal pro-
portionate increases in Y for different observations, whereas the linear model is
appropriate when theory suggests that equal-sized increases in X lead to equal
absolute increases in Y for different observations. In practice, one way to com-
pare (6.7) with (6.40) is to graph the residuals against the explanatory variable,
ED (a computer can do this easily). If the residuals appear to be unrelated to
ED in one case, but related to £ED in a U or N shape in the other, then the case
with the unrelated residuals may be judged better because it is in greater con-
formity with regression theory. Note, however, that there will be no linear
relation between the residuals and ED because OLS always makes this corre-
lation equal to zero. "

Another common application of the semilog specification is to estimate the
trend rate of growth or shrinkage in a time-series variable. Consider a simple
model of growth

Y, = Yol + r) (6.41)

where i indicates the number of years since period 0. Since our time variable
(T') conforms to our observation numbering, we can write

Y, = Y,(1 + 7 (6.42)
Taking logarithms yields
InY, =InY, + T:In (1 + r) (6.43)

Now, In Y, and In (1 + r) are both constants, which we can rename 8, and 3,
respectively. Adding a disturbance for econometric reality, (6.43) becomes

InY;, = By, + BT, + u, (6.44)

4

which is suitable for OLS estimation using the transformed variable In Y as the
regressand. Since B, = In (1l + r) = r, B, is approximately the estimated
annual rate of growth [see (2.12)].
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For example, choosing GNP as a variable of interest, we find that

A
LNGNP; = 6.456 + 0.0354T,

: (6.45)
R? = .088 SER = 0.0297

for the 25 observations in the time-series data set. The annual rate of growth of
GNP is estimated to be 3.54 percent based on the assumption behind model
(6.44) that the systematic rate of growth was constant over this period. The
disturbance term allows for random fluctuation of GNP from its trend each year.

Problems
Section 6.1 ,
* 6.1 If the expected value of Y for the ith observation is 35, how could it
be that the actual value is 33?
6.2 Suppose that an appropriately estimated regression is )?,. =3 + 4X.
(a) Determine the change in Y associated with AX = 2.
(b) Comparing two particular observations in the data, it turns out that
AY = 9 while AX = 2. What accounts for the difference between
this AY and your answer to part (a)?
6.3 In regressions of saving on income reported in Section 5.5, the slope

coefficient was 86.3 in one case and 0.0863 in another. In which case
is income more important in explaining saving? Why?

Section 6.2

6.4 Based on the regression reported as Equation (6.7):

* 6.5

* 6.6

6.7

6.8

(a) Determine the predicted value of EARNS corresponding to
ED = 12.

(b) Determine the change in predicted EARNS associated with a change
from ED = 12 to ED = 16.

(¢) Thinking of AED = 1, is the effect on earnings of the senior year
in college the same as for the sophomore year?

Suppose that Equation (6.6) is the correct specification of the relation
between EARNS and ED. If the regression (6.7) explains 28.5 percent
of the variation in earnings in the sample, what accounts for the rest
of the variation?

Suppose that in 1980 all earnings levels had been inflated by a factor
of 100 percent compared with the levels of 1963 If the relation be-
tween EARNS and ED otherwise remained unchanged, what would be
the impact of an additional year of schooling on predicted earnings in
19807

Based on Equation (6.10), how much of an increase in DPI is required
to increase predicted CON by 1 billion dollars?

Interpret the estimated intercept in Equation (6.10).
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Section 6.3

6.9

* 6.10

6.11

6.12

6.13

* 6.14

6.15

Suppose that instead of 7 in Equation (6.14) we had used the actual
year number, 7, as the regressor (i.e., 1, = 1956, 1, = 1957, etc.).
What would be the estimated regression of APC on ¢?

From Table 2.3, find the actual values of CON and DPI for 1974.
What is the actual value for the APC? What is the predicted value of
the APC based on Equation (6.14)?

Assuming that DP/ increases steadily over time, what does Equation
(6.10) imply about what happens to the average propensity to consume
over time?

Suppose that in normal times the yield on bonds increases with the
time to maturity, but that it increases at a decreasing rate and that it
never goes above some natural level. Explain how a regression model
can best be used to estimate the relation between yield and time to
maturity.

Based on the estimated Phillips curve (6.19), what level of unemploy-
ment would have been required to bring the predicted rate of inflation
down to zero?

Based on Equation (6.22), what is the predicted value of consumption
for 19747 What is the predicted value based on Equation (6.10)?

Based on Equation (6.25), determine the predicted level of investment
for 1976.

Section 6.4

6.16

6.17

* 6.18

6.19

* 6.20

6.21

* 6.22

With reference to Equation (6.26), what happens to the value of all
possible observations on Y if 3, is increased by a constant amount?

Based on the slope coefficient in Equation (6.33), what would be the
proportional impact on predicted M of the actual increase in GNP that
occurred between 1967 and 19687 What was the actual proportional
change in M? (See Table 2.3.)

Suppose that In ¥ = 1.0 + 0.25 In X. Compute the predicted values
of Y for these four values of X: 100, 500, 1000, 1500.

Plot the four Y, X points determined in Problem 6.18. How does the
shape of this graph compare with Figure 6.3?

Suppose that X increases from 500 to 1000. Based on your calculations
for Problem 6.18, what is the percentage increase in predicted Y? How
does this compare with the estimated elasticity?

Based on Equation (6.40), what is the proportional change in predicted

ParmmN thf Wﬂl]](" result Frnm g"nnlno a collecge education rather than

CGilidiiies, Viival VuiuLauivil Laliivl uidar:

stopping after completing high school?

Consider the specification of a demand curve: Q = AP”. Interpret the
meaning of b. Based on examination of Figure 6.3 and knowledge of
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economics, is b likely to be positive or negative? How could you use
simple regression to estimate the value of 5?

6.23 Suppose that the labor force has been growing at a steady rate over

time. Explain how a regression model can be used to estimate the rate
of growth.

Appendix

* 6.24 Based on the relation in Problem 6.18, follow the procedure in Equa-
tion (6.48) to determine the exact predicted percentage increase in Y
associated with a 160 percent increase in X. Compare this result with
that in Problem 6.20.

6.25 Based on Equation (6.40), what is the exact proportionate change for
Problem 6.21?7 Compare this with the simpler calculation.

APPENDIX: The Coefficients in Logarithmic
Models™

The slope coefficients in log-linear and semilog models have straightforward
interpretations when AX and the accompanying AY are small. These are given
in Section 6.4 and are derived here. For large changes these interpretations are
poor approximations, and to determine the effect AY resulting from a given AX
we must work through the mathematical specification of the model, as also
shown here.

For the log-linear functional form, the point elasticity interpretation is derived
using calculus:

InY =5, + B, InX

d(nY) = dB, + d(B, In X)
dy/Y = 0 + B,dX/X)

(6.46)

dy/y _dY X

dX/X  dX Y

B, =

The middle expression in the last line of (6.46) is the elasticity, and the deri-
vation shows that this is equal to 3,, a constant. Roughly speaking, we may
say that a 1 percent change in X leads to a 3, percent change in Y.

For discrete changes in X and Y we consider the movement from p’ to p”
along the relation between Y and X illustrated in Figure 6.5. Letting X, and Y,
correspond to p’, and X, and Y, correspond to p”, we find that

*This appendix is relatively ditficult and can be skipped without loss of continuity.
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Y 4

AY

¢ ond

X, X, X

FIGURE 6.5 Moving from p’ to p” along a relation between Y and X is viewed as a
change in Y (i.e., AY) resulting from a given change in X (i.e., AX). In the linear form
(not illustrated here), ¥ and X are related in such a way that AY is a constant multiple of
AX. In the log-linear form, Y and X are related in such a way that AY/Y is a constant
multiple of AX/X, approximately; that is, the elasticity is constant, and therefore it does
not vary with the level of X. In the semilog form, ¥ and X are related in such a way that
AY/Y is a constant multiple of AX, approximately; that is, the proportionate change in ¥
resulting from a given 4X does not depend on the level of X.

InY, = B, + B, InX,
InY, = B, + B, InX,

InY, —InY, =8, — By + B, InX, — B, InX,
In (Y,/Y) = B, In (X,/X))

(6.47)

_In(Y,/Y,) In(l + pcofY)
" In(X,/X)) In(1 + pcofX)

B

_pcofY
pc of X

3

where “‘pc of Y’ denotes the proportionate change in Y. The first two lines are
statements of the relation holding at p” and p’, and the third line results from
subtracting the second line from the first. The fourth line is obtained by applying
the rules of logarithms. The fifth line isolates 3, and shows what it is equal to
in terms of proportionate changes of ¥ and X. When the proportionate changes
are small, the final approximation is good; this yields the elasticity.

We can use this result to calculate the effect on Y resulting from any given
change in X. For example, [%f in the demand for money equation (6.33) is
0.215. If GNP were to increase by 100 percent (pc = 1.00), as it does over
the 1956—1980 sample period, the proportionate effect on M could be determined

as follows. First (6.47) is rewritten as
In(l + pcof V) =068,In(l + pcofX) =78, In(l +1)
= (0.215)(0.693) = 0.149

(6.48)
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Taking antilogs yields
1 + pcof ¥ = 1.161, so pcofY = 0.161 (6.49)

Hence the correct predicted proportionate change in Y is 16.1 percent, which is
considerably smaller than the 21.5 percent change that would be predicted by
simply applying the point elasticity. '

For the semilog form,

InY = B, + By

S

dinY) = dB, + dB,X = B, dX (6.50)

dinY) dv/y
dx —  dX

B =

Roughly speaking, a unit change in X leads to a 8, proportionate change in Y.
For discrete changes in X and Y we consider moving from p’ to p” in Figure
6.5 again:

InY, = By + BX>
InY, = B, + BX,
InY, —InY, = B, — By, + BX, — B.X, (6.51)
In (Y,/Y,) = B, AX

In(1 + pcofY) pcofY
AX AX

B =

When the changes are small, the final approximation is good; this is our easy
interpretation.

The effect on Y resulting from any given change in X may be derived as
follows. Restating (6.51) leads to

In(l + pcofY) = B, AX
1 + pcof Y = ePdX | (6.52)
pc of Y = ¢Pd% — |
For example, in the earnings function (6.40) the estimated slope coefficient,

0.107, was interpreted as indicating that each additional year of schooling in-
creases earnings by approximately the multiplicative factor 0.107, or 10.7 per-

cent. The actual computed increase is ¢”'%7 — 1 = 0.113, or 11.3 percent. A
three-year increase in schooling increases earnings by the factor ¢3! — | =

0.379, or 37.9 percent. This is substantially larger than the 32.1 percent com-
puted by the approximation (6.37).





