МЕТАПТҮХІАКО ПРОГРАММА
 (TOURISM MANAGEMENT)

Pricing of Multiple Products

- Products with Interrelated Demands
- Plant Capacity Utilization and Optimal Product Pricing
- Optimal Pricing of Joint Products
- Fixed Proportions
- Variable Proportions

Pricing of Multiple Products

Products with Interrelated Demands

For a two-product (A and B) firm, the marginal revenue functions of the firm are:

$$
\begin{aligned}
& M R_{A}=\frac{\Delta T R_{A}}{\Delta Q_{A}}+\frac{\Delta T R_{B}}{\Delta Q_{A}} \\
& M R_{B}=\frac{\Delta T R_{B}}{\Delta Q B}+\frac{\Delta T R_{A}}{\Delta Q_{B}}
\end{aligned}
$$

Pricing of Multiple Products

Plant Capacity Utilization

A multi-product firm using a single plant should produce quantities where the marginal revenue $\left(\mathrm{MR}_{\mathrm{i}}\right)$ from each of its k products is equal to the marginal cost (MC) of production.

$$
M R_{1}=M R_{2}=\cdots=M R_{k}=M C
$$

FIGURE 11-1 Optimal Outputs and Prices of Multiple Products by a Firm D_{A}, D_{B}, and D_{C} are the demand curves for products A, B, and C sold by the firm, and $M R_{\mathrm{A}}, M R_{\mathrm{B}}$, and $M R_{\mathrm{C}}$ are the corresponding marginal revenue curves. The firm maximizes profits when $M R_{A}=M R_{B}=M R_{C}=M C$. This is shown by points E_{A}, E_{B}, and E_{C}, where the equal marginal revenue ($E M R$) curve, at the level at which $M R_{\mathrm{C}}=M C$, crosses the $M R_{\mathrm{A}}, M R_{\mathrm{B}}$, and $M R_{\mathrm{C}}$ curves. Thus, $Q_{\mathrm{A}}=60$ and $P_{\mathrm{A}}=\$ 16 ; Q_{\mathrm{B}}=90$ (from $150-60$) and $P_{\mathrm{B}}=\$ 15$; and $Q_{\mathrm{C}}=180$ (from 330-150) and $P_{C}=\$ 14$. Note that each successive demand curve is more elastic and that the price of each successive product is lower, while its MC is higher.

FIGURE 11-2 Optimal Output and Prices of Joint Products Produced in Fixed Proportions In both panels, D_{A} and $M R_{\mathrm{A}}$, and D_{B} and $M R_{\mathrm{B}}$ refer, respectively, to the demand and marginal revenue curves for products A and B, which are jointly produced in fixed proportions. The total marginal revenue $\left(M R_{T}\right)$ curve is obtained from the vertical summation of the $M R_{\mathrm{A}}$ and $M R_{\mathrm{B}}$ curves. When the marginal cost of the jointly produced production package is $M C$ (see the left panel), the best level of output of products A and B is 40 units and is given by point E, at which $M R_{T}=M C$. At $Q=40, P_{\mathrm{A}}=\$ 12$ on D_{A} and $P_{\mathrm{B}}=\$ 5$ on D_{B}. On the other hand, with $M C^{\prime}$ (see the right panel), the best level of output of the joint product package is 60 units and is given by point E^{\prime}, at which $M R_{T}=M C^{\prime}$. At $Q=60, P_{\mathrm{A}}^{\prime}=\$ 10$ on D_{A}, but since $M R_{\mathrm{B}}$ is negative for $Q_{\mathrm{B}}>45$, the firm sells only 45 units of product B at $P_{\mathrm{B}}^{\prime}=\$ 4.50$ (at which $T R_{\mathrm{B}}$ is maximum at $M R_{\mathrm{B}}=0$) and disposes of the remaining 15 units of product B.

FIGURE 11-3 Profit Maximization with Joint Products Produced in Variable Proportions The curved lines are product transformation curves showing the various combinations of products A and B that the firm can produce at each level of total cost (TC). The curvature arises because the firm's productive resources are not perfectly adaptable in the production of products A and B that give rise to the same total revenue ($T R$) to the firm when sold at constant prices. The tangency point of an isorevenue to a $T C$ curve gives the combination of products A and B that leads to the maximum profit (π) for the firm for the specific $T C$. The overall maximum profit of the firm is $\pi=\$ 40$. This is earned by producing and selling 80A and 120B (point E) with $T R=\$ 240$ and $T C=\$ 200$.

Price Discrimination

Charging different prices for a product when the price differences are not justified by cost differences.

Objective of the firm is to attain higher profits than would be available otherwise.

Price Discrimination

1.Firm must be an imperfect competitor (a price maker)
2. Price elasticity must differ for units of the product sold at different prices
3.Firm must be able to segment the market and prevent resale of units across market segments

First-Degree Price Discrimination

- Each unit is sold at the highest possible price
- Firm extracts all of the consumers' surplus
- Firm maximizes total revenue and profit from any quantity sold

Second-Degree Price Discrimination

- Charging a uniform price per unit for a specific quantity, a lower price per unit for an additional quantity, and so on
- Firm extracts part, but not all, of the consumers' surplus

FIGURE 11-4 First- and Second-Degree Price Discrimination With D as the demand curve faced by a monopolist, the firm could sell $Q=40$ at $P=\$ 2$ for a $T R=\$ 80$ (the area of rectangle $C F O G$). Consumers, however, would be willing to pay $A C F 0=\$ 160$ for 40 units of the product. The difference of $\$ 80$ (the area of triangle $A C G$) is the consumer's surplus. With first-degree price discrimination (i.e., by selling each unit of the product separately at the highest price possible), the firm can extract all the consumers' surplus from consumers. If, however, the firm charged the price of $P=\$ 4$ per unit for the first 20 units of the product and $\$ 2$ per unit on the next 20 units, the total revenue of the firm would be $\$ 120$ (the sum of the areas of rectangles $B / O H$ and $C F J K$), so that the firm would extract $\$ 40$ (the area of rectangle $B K G H$), or half of the consumers' surplus from consumers. This is second-degree price discrimination.

First- and Second-Degree Price Discrimination

Third-Degree Price Discrimination

- Charging different prices for the same product sold in different markets
- Firm maximizes profits by selling a quantity on each market such that the marginal revenue on each market is equal to the marginal cost of production

Third-Degree Price Discrimination

$$
\begin{array}{ll}
\mathrm{Q}_{1}=120-10 \mathrm{P}_{1} \text { or } \mathrm{P}_{1}=12-0.1 \mathrm{Q}_{1} \text { and } M R_{1}=12-0.2 \mathrm{Q}_{1} \\
\mathrm{Q}_{2}=120-20 \mathrm{P}_{2} \text { or } \mathrm{P}_{2}=6-0.05 \mathrm{Q}_{2} \text { and } M R_{2}=6-0.1 \mathrm{Q}_{2} \\
\mathrm{MR}_{1}=\mathrm{MC}=2 & \mathrm{MR}_{2}=\mathrm{MC}=2 \\
\mathrm{MR}_{1}=12-0.2 \mathrm{Q}_{1}=2 & \mathrm{MR}_{2}=6-0.1 \mathrm{Q}_{2}=2 \\
\mathrm{Q}_{1}=50 & \mathrm{Q}_{2}=40 \\
\mathrm{P}_{1}=12-0.1(50)=\$ 7 & \mathrm{P}_{2}=6-0.05(40)=\$ 4
\end{array}
$$

FIGURE 11-5 Third-Degree Price Discrimination Panel a shows D_{1} and $M R_{1}$ (the demand and marginal revenue curves faced by the firm in market 1), panel b shows D_{2} and $M R_{2}$, and panel c shows D and $M R$ (the total demand and marginal revenue curves for the two markets together). $D=\Sigma D_{1+2}$, and $M R=\sum M R_{1+2}$, by horizontal summation. The best level of output of the firm is 90 units and is given by point E in panel c at which $M R=M C=$ $\$ 2$. The firm sells 50 units of the product in market 1 and 40 units in market 2 , so that $M R_{1}=M R_{2}=M R=M C=$ $\$ 2$ (see points E_{1}, E_{2}, and E). For $Q=50, P_{1}=\$ 7$ on D_{1} in market 1, and for $Q_{2}=40, P_{2}=\$ 4$ on D_{2} in market 2 . With an average total costs of $\$ 3$ per unit for $Q=90$, the firm earns a profit of $\$ 4$ per unit and $\$ 200$ in total in market 1, and $\$ 1$ per unit and $\$ 40$ in total in market 2, for an overall total profit of $\$ 240$ in both markets. In the absence of price discrimination, $Q=90, P=\$ 5$ (see panel c), so that profits are $\$ 2$ per unit and $\$ 180$ in total.

Source: Con Edison, New York City (2005).

TABLE 11-2 Electricity Rates Charged by Con Edison in 2005 for Peak and Off-Peak Hours (cents per kilowatt-hour)

Peak Hours
Off-Peak Hours

Residential Rates, $0-250 \mathrm{kWh}$ (single residence)		
June-September	18.26	0.63
Other months	6.57	0.63
Commercial Rates, $0-900 \mathrm{kWh}$ (small business)		
June-September	13.55	0.48
Other months	6.66	0.48
Delivery Charges (Plus $\$ / \mathrm{kWh}$) for Low and High Tension (large business)		
June-September	$10.24(0.52)$	$5.47(0.52)$
Other months	$7.55(0.52)$	$3.27(3.17)$

Source: Con Edison, New York City (2005).

International Price Discrimination

- Persistent Dumping
- Predatory Dumping
- Temporary sale at or below cost
- Designed to bankrupt competitors
- Trade restrictions apply
- Sporadic Dumping
- Occasional sale of surplus output

Transfer Pricing

- Pricing of intermediate products sold by one division of a firm and purchased by another division of the same firm
- Made necessary by decentralization and the creation of semiautonomous profit centers within firms

FIGURE 11-6 Transfer Pricing of the Intermediate Product with No External Market MC, the marginal cost of the firm, is equal to the vertical summation of $M C_{p}$ and $M C_{m}$, the marginal cost curves of the production and the marketing divisions of the firm, respectively. D_{m} is the external demand for the final product faced by the marketing division of the firm, and $M R_{m}$ is the corresponding marginal revenue curve. The firm's best level of output of the final product is 40 units and is given by point E_{m}, at which $M R_{m}=M C$, so that $P_{m}=\$ 14$. Since the production of each unit of the final product requires 1 unit of the intermediate product, the transfer price for the intermediate product, P_{t}, is set equal to $M C_{p}$ at $Q_{p}=40$. Thus, $P_{t}=\$ 6$. With $D_{p}=M R_{p}=P_{t}=M C_{p}=\$ 6$ at $Q_{p}=40$ (see point E_{p}), $Q_{p}=40$ is the best level of output of the intermediate product for the production division.

FIGURE 11-7 Transfer Pricing of the Intermediate Product with a Perfectly Competitive Market This figure is identical to Figure 11-6, except that $M C$ is lower than $M C_{p}$. At the perfectly competitive external price of $P_{t}=\$ 6$ for the intermediate product, the production division of the firm faces $D_{p}=M R_{p}=$ $P_{t}=\$ 6$. Therefore, the best level of output of the intermediate product is $Q_{p}=50$ and is given by point E_{p}^{\prime} at which $D_{p}=M R_{p}=P_{t}=M C=\$ 6$. Since the marketing division can purchase the intermediate product (internally or externally) at $P_{t}=\$ 6$, its total marginal cost curve, $M C_{t}$, is equal to the vertical summation of $M C_{m}$ and P_{t}. Thus, the best level of output of the final product by the marketing division is 40 units and is given by point E_{m}, at which $M R_{m}=M C_{t}$, so that $P_{m}=\$ 14$ (as in Figure 11-6).

FIGURE 11-8 Transfer Pricing of the Intermediate Product with an Imperfectly Competitive Market Panel a presents the net marginal revenue $\left(M R_{m}-M C_{p}\right)$ curve of the marketing division for the intermediate product, panel b shows the external demand and marginal revenue curves (that is, D_{e} and $M R_{e}$) for the intermediate product, while panel c shows the $M R_{p}=M R_{m}-M C_{p}+M R_{e}$ and $M C_{p}$ curves of the production division. The best level of output of the intermediate product by the production division is 40 units and is given by E_{p}, at which $M R_{p}=M C_{p}$ in panel c. The optimal distribution of $Q_{p}=40$ is 20 units to the marketing division and 20 units to the external market (given by points P_{t} and E_{e}, respectively), at which $M R_{m}-M C_{p}=M R_{e}=M R_{p}=M C_{p}=\$ 4$. The transfer price to the marketing division is then $P_{t}=M C_{p}=\$ 4$, and the price of the intermediate product for sales on the external market is $P_{e}=\$ 6$.

Pricing in Practice Cost-Plus Pricing

- Markup or Full-Cost Pricing
- Fully Allocated Average Cost (C)
- Average variable cost at normal output - Allocated overhead
- Markup on Cost (m) $=(P-C) / C$
- Price $=P=C(1+m)$

Pricing in Practice Optimal Markup

$$
P=M R\left(\frac{E_{P}}{E_{p}+1}\right)
$$

$$
\begin{gathered}
M R=C \\
P=C\left(\frac{E_{P}}{E_{p}+1}\right)
\end{gathered}
$$

Pricing in Practice Optimal Markup

$$
\begin{gathered}
P=C\left(\frac{E_{P}}{E_{p}+1}\right) \\
P=C(1+m) \\
C(1+m)=C\left(\frac{E_{P}}{E_{p}+1}\right) \\
m=\frac{E_{P}}{E_{P}+1}-1
\end{gathered}
$$

Pricing in Practice Incremental Analysis

A firm should take an action if the incremental increase in revenue from the action exceeds the incremental increase in cost from the action.

Pricing in Practice

- Two-Part Tariff
- Tying
- Bundling
- Prestige Pricing
- Price Lining
- Skimming
- Value Pricing

Example: Price Discrimination

Red Rose is a monopolist selling flowers in two villages, namely, Trenton and Stenton. There are 100 individuals in Trenton, each with a demand function for flowers $q_{T}=0.4-\frac{p_{T}}{100}$. There are 500 individuals in Stenton, each with a demand function for flowers $q_{S}=0.16-\frac{p_{S}}{500}$. Red Rose's cost function is $C(Q)=10 Q$, where $Q=Q_{T}+Q_{S}$ is the total volume of flowers sold.

1. Suppose that price discrimination is possible. Find the equilibrium and the price elasticities of demand in each village. Comment on your findings.
Answer: The aggregate demand function for Trenton is $Q_{T}=q_{T} \times 100=40-$ p_{T} whereas that for Stenton is $Q_{S}=q_{S} \times 500=80-p_{S}$. Accordingly, the total revenue functions are: $T R_{T}=p_{T}\left(Q_{T}\right) \times Q_{T}=40 Q_{T}-Q_{T}^{2}$ and $T R_{S}=p_{S}\left(Q_{S}\right) \times$ $Q_{S}=80 Q_{S}-Q_{S}^{2}$. This implies that $M R_{T}=40-2 Q_{T}$ and $M R_{S}=80-2 Q_{S}$. In equilibrium, it holds $M R_{T}=M R_{S}=M C(=10)$.
Substituting from above and solving the resulting equations one gets $Q_{T}=$ $15, Q_{S}=35, p_{T}=25$ and $p_{S}=45$. The price elasticities of demand are $\varepsilon_{T}^{d}=$ $\frac{\partial Q_{T}}{\partial p_{T}} \frac{p_{T}}{Q_{T}}=-1 \times \frac{25}{15}=-1.67$ and $\varepsilon_{S}^{d}=\frac{\partial Q_{S}}{\partial p_{S}} \frac{p_{S}}{Q_{S}}=-1 \times \frac{45}{35}=-1.29$.
The results make economic sense; the higher price is charged in the market where the elasticity of demand is lower.

Example: Price Discrimination

2. Suppose that price discrimination is not possible. Find the new equilibrium. Answer: The aggregate (two-markets) demand is $Q=Q_{T}+Q_{S}=120-2 p$, where p is the common price. The respective marginal revenue function is $M R=60-Q$, which when equated to the marginal cost $M C=10$ yielding $Q=50$ and $p=35$.
3. Compare Red Rose's profits, aggregate (village) consumer surpluses and total welfare under both scenarios.
Answer: With the discriminatory price policy the firm's profit is $\pi=$ $(15 \times 25)+(35 \times 45)-(10 \times 50)=1,450$. Consumer surpluses are: $C S_{T}=$ $0.5 \times(40-25) \times 15=112.5 \quad$ and $\quad C S_{S}=0.5 \times(80-45) \times 35=612.5$ Therefore, the two-market consumer surplus is $C S=725$ and the welfare level is $W=1,450+725=2,175$.
With the non-discriminatory pricing the firm's profit is $\pi=(50 \times 35)-$ $(10 \times 50)=1,250$. The consumer surplus in Trenton is $C S_{T}=0.5 \times(40-$ 35) $\times 5=12.5$ and in Stenton is $C S_{S}=0.5 \times(80-35) \times 45=1,012.5$. The corresponding welfare level is $W=1,250+12.5+1,012.5=2,275$ (increases by 100).
