
Time Series 

Analysis
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Time Series

 A time series is a sequence of data points, measured 
typically at successive times spaced at uniform time 
intervals, i.e., daily exchange rates, weekly stock returns, 
monthly interest rates and annual GDP.

 We denote a time series as Xt for t = 1, 2, …, n.

 The notation is very different that cross section data, i.e., Xi. 

 Xt contains two important elements: a) the time of reference 
t and b) the magnitude of the series at time t. 

 The hierarchy of the sequence of the data is also very 
important.
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ARIMA Models

 In regression analysis the objective is to explain the 
behaviour of one variable as a function of several other 
variables, i.e., Y = f(X1, X2, … Xk).

 In time series analysis this objective does not exit.

 In time series analysis the behaviour of one variable is 
explained by its past behaviour. 

 Thus, using the Box and Jenkins (1970) methodology the 
objective is to identify the best fitted model obtained by a 
class of models known as ARIMA models.

 ARIMA stands for AutoRegressive Integrated Moving 
Average Processes.
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Stationary Processes

 The time series analysis begins with the definition of a stationarity. 

 Stationary process is the process that converges to its long run equilibrium.

 It is also a process that its properties are well defined and therefore can be 
analysed.

 More formally, a process is said to be strictly stationary if its properties are 
unaffected by a change of time origin and its joint probability distribution at any 
times t1,t2,..,tm must be the same as the joint probability distribution at times t1+k, 
t2+k,…,tm+k, where k is an arbitrary shift in time (k is an integer number). 

 A simpler version of the above definition for stationary is given by the concept 
of weak stationarity.

 A process is said to be weakly stationary if it satisfies the following three 
conditions:
 The mean of the process is constant through the time: E[Xt] = μ for all t.

 The variance is constant through the time: Var[Xt] = σ2 for all t.

 The covariance between any two values of the series depends only on their distance 
apart in time, not in the absolute location in time:  Cov(Xt, Xt-k) = γk.
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Autocovariances

 The quantities γk are called autocovariances for k = …. -1, 0, 
1, ….

 These quantities are population autocovariances.

 Notes:

 1) γ0 = Var(Xt) = σ2 which is the variance of the series. 

 2) γ-k = γk from stationarity.

 The quantities ck are called sample autocovariances.

 where 
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Autocorrelations

 The population autocorrelations ρk are defined as: 

 Note:
 1) ρ0 = 1

 2) ρ-k = ρk from stationarity.

 The graph of a set of autocorrelations is known as 
correlogram,  i.e., graphical presentation of ρk for values of 
k = 0, 1, 2, …. 
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The white noise process

 The term white noise process comes from the 
engineering area as a random signal.

 This process has some unique characteristics that 
have been used in econometrics analysis also, i.e., 
the error term in any regression model.
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The simplest example - W.N.

 As in econometrics, the White Noise (W.N.) process, 

denoted as ε, has the following characteristics:

 Mean zero, i.e., E[ε] = 0 for all t.

 Constant variance, i.e., Var[ε] = σ2 for all t.

 Uncorrelated values, i.e., Cov(εt, εs) = 0 for t ≠ s.

 Thus, this process has values of ρk, such that:

ρ0 = 1 and all other ρk = 0 for k = 1, 2, … 

 Graph the correlogram of this process.
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The sample autocorrelations

 The sample autocorrelations rk are defined as:

 For moderately large samples, the sample autocorrelations are 
approximately normally distributed.

 The rk’s of a white noise process have mean zero and variance:

 when k is small relative to n. 
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The objective

 The aim in time series analysis is to explain what will happen in the 
future in terms of what is already known.

 In this sense, the mean and the variance of a time series are of 
limited value.

 The most relevant information is likely to come from 
autocovariances γk and furthermore from the autocorrelations ρk.   

 So the objective in time series analysis can be summarized as 
follows: 

Data Model
how to obtain

rk estimates ρk
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The AR(1) Process

 A stationary time series with mean zero, i.e., E(Xt)=0, is generated by an 
AR(1) process as follows:

Xt = φXt-1 + εt

where |φ| < 1, t = 1, 2, …, n and εt is a white noise process.

 The model presents short run behavior, whereas the long run behavior is 
obtained by recursively substituting lag values of X. 

 Hence,

 Since, |φ| < 1  φn → 0 as n → ∞. 

 Thus the long run behavior of the series is expressed as a function of ε.

 Example YF in Macroeconomics. 
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Autocorrelations of AR(1)

 The autocovariances of an AR(1) process are:

γ0 = σ2/(1 - φ2) and γk = φγk-1 for k ≥ 1.  

 Note that for the existence of γ0 |φ| < 1.

 The autocorrelations of an AR(1) process are:

ρ0 = 1, ρ1 = φ and ρk = φρk-1 for k ≥ 2  or  ρk = φk for k ≥ 0. 

 Note that ρk go to zero as k increases.

 For φ = 0.8  ρ1 = 0.8, ρ2 = 0.64, ρ3 = 0.512, ρ4 = 0.4096 etc.

 For φ = -0.8  ρ1 = -0.8, ρ2 = 0.64, ρ3 = -0.512, ρ4 = 0.4096 
etc

 Thus, the autocorrelations follow the model.
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The AR(1) with mean

 Xt ~ AR(1) with E(Xt) = μ ≠ 0 for all t.

 The model: Xt - μ = φ(Xt-1 - μ) + εt

 Since the autocorrelations are not affected by the 

mean the ρk will behave as previously presented.

 Constant versus Mean.

 Consider the SRM: Xt = α + βXt-1 + εt

 If both models can equally be estimated then β = φ

and α = (1 – φ)μ so μ = α/(1 – φ). 
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The Backshift operator

 The Backshift operator B is defined as: 
BjXt = Xt-j where j ≥ 1. For j =0 B0Xt = Xt. 

 AR(1): Xt = φXt-1 + εt (1 – φB)Xt = εt.

 Thus,  Xt = 1 / (1 – φB)εt = [ 1 + φB + φ2B2 + … ]εt. 

 So, the AR(1) process can be written as linear process of 
infinite past values of the error term. 

 This is the long run behavior of the AR(1) process.

 To ensure that the root of the 1/B – φ = 0 must be less that 
one.

 The series is the infinite sum of a geometric process of εt. 
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The AR(2) Process

 A stationary time series with mean zero, i.e., E(Xt) = 0, is 
generated by an AR(2) process as follows:

Xt = φ1Xt-1 + φ2Xt-2 + εt

where φ1+ φ2 < 1 or -φ1+ φ2 < 1 and |φ2| < 1, t = 1, 2, …, n and εt is 
a white noise process.

 The model presents short run behavior, whereas the long run 
behavior is obtained by recursively substituting lag values of X. 

 Alternatively,  (1 – φ1B – φ2B
2)Xt = εt 

Xt = 1 / (1 – φ1B – φ2B
2)εt.

 Thus, the AR(2) can be written as a linear process with infinite 
error terms which is the long run behavior of the series.

 To ensure that the roots of the polynomial 1 / B2 – φ11/B – φ2 = 0 
must be less than one. {φ1+ φ2 < 1 or -φ1+ φ2 < 1 and |φ2| < 1}.
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Autocovariances of AR(2)

 The autocovariances of an AR(2) process are:

 Since γ0 > 0, then (1 – φ2) > 0  |φ2| < 1. 

 Also, (1 + φ2)[(1 – φ2)
2 – φ1

2] > 0.  Since |φ2| < 1  (1 + φ2) > 0.

 Thus, [(1 – φ2)
2 – φ1

2] > 0  [(1 – φ2) – φ1] [(1 – φ2) + φ1] > 0.

 So, 1 – φ2 – φ1 > 0  φ1 + φ2 < 1 and 1 – φ2 + φ1 > 0  -φ1 + φ2 < 1.

 Moreover, γ1 = [φ1 / (1 – φ2)] γ0 & γ2 = [φ1
2 / (1 – φ2) + φ2] γ0.

 All other autocovariances are defined as: 

γk = φ1γk-1 + φ2γk-2 for all values of k  ≥ 3.
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Autocorrelations of AR(2)

 The autocorrelations of an AR(2) process are:

 ρ1 = φ1/(1 – φ2)

 ρ2 = [φ1
2 / (1 – φ2) + φ2] 

 ρk = φ1ρk-1 + φ2ρk-2 for all values of  k  ≥ 3. 

 Hence, for values of k  ≥ 3 the autocorrelations 
behave as the AR(2) model.

 The first two autocorrelations are used for the 
initial conditions.

 The autocorrelations decay toward zero.
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The AR(2) with mean

 Xt ~ AR(2) with E(Xt) = μ ≠ 0 for all t.

 The model: Xt - μ = φ1(Xt-1 - μ) + φ2(Xt-2 - μ) + εt.

 Since the autocorrelations are not affected by the mean the 
ρk will behave as previously presented. 

 Also, (1 – φ1B – φ2B
2)(Xt – μ) = εt.

 Constant versus Mean.

 Consider the SRM: Xt = α + β1Xt-1 + β2Xt-2 + εt

 If both models can equally be estimated then : β1=φ1, β2=φ2

and α = (1 – φ1 – φ2)μ so μ = α/(1 – φ1 – φ2).
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The AR(p) Process

 A stationary time series with mean zero, i.e., E(Xt) = 0, is 
generated by an AR(p) process as follows:

Xt = φ1Xt-1 + φ2Xt-2 + …+ φpXt-p +εt

εt is a white noise process.

 The model presents short run behavior, whereas the long run 
behavior is obtained by recursively substituting lag values of X. 

 Alternatively,  (1 – φ1B – φ2B
2 – … – φpB

p)Xt = εt 

Xt = 1 / (1 – φ1B – … – φpB
p)εt.

 Thus, the AR(p) can be written as a linear process with infinite 
error terms which is the long run behavior of the series.

 To ensure that the roots of 1/Bp – φ11/Bp-1 – … φp = 0 must be less 
than one. 
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Autocovariances of AR(p)

 The autocovariances of an AR(p) process are:

 Then, up to the order of the AR process, that is the first p 
autocovariances are used for the initial conditions.

 After the order of the process all other autocovariances are 
defined as: 

γk = φ1γk-1 + φ2γk-2 + … + φpγk-p for all values of k  ≥ p+1.
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Autocorrelations of AR(p)

 To obtain the first p autocorrelations we use the Yule-Walker 
equations: 
 ρ1 = φ1 + φ2ρ2 + φ3ρ3 + … + φpρp-1

 ρ2 = φ1ρ1 + φ2 + φ3ρ2 + … + φpρp-2

 ………………………………….

 ρp = φ1ρp-1 + φ2ρp-2 + φ3ρp-3 + … + φp

 These equations will give us a system of p equations with p 
unknown. 

 The first p autocorrelations are used for the initial conditions.

 All other autocorrelations follow the AR(p) model, i.e., 
ρk = φ1ρk-1 + φ2ρk-2 + … φpρk-p for all values of  k  ≥ p+1. 

 The autocorrelations decay toward zero.
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The MA(1) Process

 A time series with mean zero, i.e., E(Xt) = 0, is generated by 
a MA(1) process as follows:

Xt = εt – θεt-1

where |θ| < 1, t = 1, 2, …, n and εt is a white noise process.

 The model presents only short run behavior. 

 If the mean of the process is not zero, i.e., E(Xt) = μ then:
Xt – μ = εt – θεt-1

 It is interesting to note that only for one period inference can 
be made. 
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Autocorrelations of MA(1)

 The autocovariances of a MA(1) process are:

 γ0 = (1 + θ2)σ2

 γ1 = -θσ2

 γk = 0 for all values of k  ≥ 2.

 Hence the autocorrelations of a MA(1) process are:

 ρ0 = 1

 ρ1 = -θ/(1 + θ2)

 ρk = 0 for all values of k  ≥ 2. 

 Note that |ρ1| ≤ 0.5, since (1 + θ)2 ≥ 0  (1 + θ2) ≥ -2θ

|θ|/(1 + θ2) ≤ 0.5

 Thus, only the first autocorrelation is not zero and all other are zero.
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Invertibility

 Invertibility means that an MA process can be expressed as an AR 
process with infinite terms.

 So for the MA(1) process we have: Xt = εt – θεt-1  Xt = (1 – θB)εt

εt =1/(1 – θB)Xt εt =[1 + θB + θ2B2 + … )Xt

 To invert a MA(1) process to an AR process we much have |θ| < 1.

 In other words, invertibility requires that the root of the polynomial 
1/B – θ = 0 must be less than one.

 Inveribility also excludes the possibility of having same models with 
different values of θ. 

 Consider: Xt = εt – θεt-1 and Xt = εt – θ-1εt-1, i.e., 0.5 and 2.

 Both models are identical since ρ1 = -θ/(1 + θ2) = -0.4 but the first one 
has smaller variance.

 Inveritibility should not related to stationarity. 
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The MA(2) Process

 A time series with mean zero, i.e., E(Xt) = 0, is generated by 
a MA(2) process as follows:

Xt = εt – θ1εt-1 – θ2εt-2

where εt is a white noise process. 

 For invertibility, i.e., Xt = (1– θ1B – θ2B
2)εt

εt = 1/(1– θ1B – θ2B
2)Xt, the roots of the polynomial: 

1/B2 – θ1 1/B – θ2 = 0 must be less than one which means 
that θ1 + θ2 < 1 , -θ1 + θ2 < 1 and |θ2| < 1.

 The model presents only short run behavior. 

 If the mean of the process is not zero, i.e., E(Xt) = μ for all t 
then:Xt – μ = εt – θ1εt-1 – θ2εt-2.  

 We can make inference only for two periods.  
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Autocorrelations of MA(2)

 The autocovariances of a MA(2) process are:

 γ0 = (1 + θ1
2 + θ2

2)σ2

 γ1 = θ1(θ2 – 1)σ2

 γ2 = -θ2σ
2

 γk = 0 for all values of k  ≥ 3.

 Hence the autocorrelations of a MA(1) process are:

 ρ0 = 1

 ρ1 = [θ1(θ2 – 1)]/(1 + θ1
2 + θ2

2)

 ρ2 = -θ2/(1 + θ1
2 + θ2

2)

 ρk = 0 for all values of k  ≥ 3. 

 Thus, only the first two autocorrelations are not zero and all other are 
zero.
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The MA(q) Process

 A time series with mean zero, i.e., E(Xt) = 0, is generated by 
a MA(q) process as follows:

Xt = εt – θ1εt-1 – θ2εt-2 – … – θqεt-q

where εt is a white noise process.

 For invertibility, i.e., Xt = (1– θ1B – … – θqB
q)εt 

εt = 1/(1– θ1B – … – θqB
q)Xt, 

the roots of the polynomial: 1/Bq – θ1 1/Bq-1 – θq = 0 
must be less than one.  

 If the mean of the process is not zero, i.e., E(Xt) = μ then:
Xt – μ = εt – θ1εt-1 – θ2εt-2 – … – θqεt-q

 Alternatively, Xt – μ = (1– θ1B – … – θqB
q)εt.
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Autocorrelations of MA(q)

 The autocovariances of a MA(q) process are:

 γ0 = (1 + θ1
2 + … + θq

2)σ2

 γk ≠ 0 for all values of k < q. 

 γk = -θqσ
2 for k = q.

 γk = 0 for all values of k  ≥ q+1.

 Hence the autocorrelations of a MA(1) process are:

 ρ0 = 1

 ρk ≠ 0 for all values of k < q. 

 ρk = -θq/(1 + θ1
2 + … + θq

2) for k = q.

 ρk = 0 for all values of k  ≥ p+1. 

 Thus, only the first q autocorrelations are not zero and all other are 
zero.
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ARMA(p, q) models

 A time series with mean zero, i.e., E(Xt) = 0, is generated by 
an ARMA(p, q) process as follows:

Xt = φ1Xt-1 + φ2Xt-2 + …+ φpXt-p +εt – θ1εt-1 – θ2εt-2 – …– θqεt-q

where εt is a white noise process. 

 Equivalent, (1–φ1B–…–φpB
p)Xt = (1– θ1B – … – θqB

q)εt 

φ(B)Xt = θ(B)εt

 Conditions for stationarity and inveribility must be satisfied. 

 No common roots.

 If the process has mean then it is written as: 
φ(B)(Xt – μ) = θ(B)εt
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Autocorrelations of ARMA(p, q)

 The autocovariances of an ARMA(p, q) process are:
 For k ≤ q  γ0, γ1, …, γk depend on φ’s and θ’s.

 For k > q  γk = φ1γk-1 + φ2γk-2 + … + φpγk-p.

 The autocorrelations of an ARMA(p, q) process are:
 For k ≤ q  ρ0, ρ1, …, ρk depend on φ’s and θ’s.

 For k > q  ρk = φ1ρk-1 + φ2ρk-2 + … φpρk-p.

 Rule: For k > q the autocorrelations of an ARMA(p, q) model 
behave as an AR(p) model. The moving average parameters 
play role only to compute the first q autocorrelations. 

 Note the difference between the constant and the mean of the 
series is determined only by the presence of the autoregressive 
parameters. 
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The ARMA(1, 1) Process

 A time series with mean zero, i.e., E(Xt) = 0, is generated by an 
ARMA(1, 1) process as follows:

Xt = φXt-1 + εt – θεt-1

where |φ| < 1, |θ| < 1, t = 1, 2, …, n and εt is a white noise process.

 Note: 
 If φ = 0, the process is a MA(1). 

 If θ = 0, the process is an AR(1)

 If φ = θ, the process is a white noise.

 The process is written also as: (1 – φB)Xt = (1 – θB)εt

 If it is stationary Xt = [1/(1 – φB)](1 – θB)εt

 If it is invertible εt = [1/(1 – θB)](1 – φB)Xt

 If the mean of the process is not zero, i.e., E(Xt) = μ, then:
(1 – φB)(Xt – μ) = (1 – θB)εt

 By recursively substituting: Xt = εt + (φ – θ)Σj=1 φ
j-1 εt-j. 
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Autocovariances of ARMA(1, 1)

 The autocovariances of an ARMA(1, 1) process are:

 γ0 = [1 – 2φθ + θ2]/(1 – φ2)σ2

 If θ = 0, γ0 = 1/(1 – φ2)σ2
 AR(1)

 If φ = 0, γ0 = [1 + θ2]σ2
MA(1)

 If φ = θ, γ0 = σ2
W.N.

 γ1 = [(1 – φθ)(φ – θ)]/(1 – φ2)σ2

 γk = φγk-1 for all values of k ≥ 2.

 The autocovariances behave like the AR(1) process for 

values of k ≥ 2.
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Autocorrelations of ARMA(1, 1)

 The autocorrelations of an ARMA(1, 1) process are:
 ρ0 = 1

 ρ1 = [(1 – φθ)(φ – θ)]/[1 – 2φθ + θ2]
 If θ = 0, ρ1 = φ AR(1)

 If φ = 0, ρ1 = - θ/[1 + θ2] MA(1)

 If φ = θ, ρ1 = 0 W.N.

 ρ2 = φρ1

 ρk = φρk-1 or ρk = φk-1ρ1 for all values of k ≥ 3.

 Note that θ appears only on ρ1 and all ρk for k ≥ 2 behave 
like an AR(1).  The only difference with an AR(1) is the 
initial values of ρ1 which includes the value of θ. 
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Integrated Processes

 Let Xt be a non-stationary process in levels, i.e., the mean of the process is not constant 
through time.

 However, this process can be stationary in first difference, i.e., Wt = Xt – Xt-1 = (1 – B)Xt

 Non-stationary processes occur when at least one of the characteristics of stationary process 
is violated. 

 Recall that a stationary process has constant mean and variance and the covariance between 
any two values of the series depends only on their distance apart in time, not in the absolute 
location in time. 

 Taking differences we hope that the process will become stationary.

 The number of differences characterizes the order of Integration denoted as I.

 In general we write: Wt = (1 – B)d Xt where d is a non-negative integer number , i.e., d = 0, 
1, 2, …
 if d = 0 Wt = Xt and the process is stationary I(0).

 if d = 1 Wt = (1 – B)Xt = Xt – Xt-1 = ΔXt and the process is I(1) or stationary in first differences.

 if d = 2  Zt = (1 – B)2Xt = (1 – B)Wt = Wt – Wt-1 = ΔWt = Xt – 2Xt-1 + Xt-2 and the process is I(2) 
or stationary in second differences.

 An ARIMA(p, d, q) model is written as: φ(B)(1 – B)dXt = θ(B)εt.

 Non-stationary processes do not converge to long run equilibrium and they are explosive. 
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A special case: Random Walk

 Consider the AR(1) process:  Xt = φXt-1 + εt

 If |φ| < 1 the process is stationary.

 If  φ = 1 the process is non-stationary (unit autoregressive root).

 Suppose φ = 1  Xt = Xt-1 + εt Xt – Xt-1 = εt ΔXt = εt

(1 – B)Xt = εt.

 The process Xt – Xt-1 = εt is known as Random Walk process.

 By recursive substitution we get: Xt = X0 + Σj=1
t εj. 

 Assuming that the initial value is zero, i.e., X0 = 0, then 
Xt = Σj=1

t εj

is simply the sum of past values of the error term. 

 Short run versus long run.

Prof. Christos Agiakloglou 35

Characteristics of RW

 The mean of the process is zero, i.e., E(Xt) = 0.

 The conditional mean is the past value, i.e., E(Xt|t-1) = Xt-1.

 For the Short Run the best we can do to predict Xt+1 is Xt

whereas for the Long Run you can do nothing.

 The variance of the process is Var(Xt) = Var(Σj=1
t εj) = tσ2.

 Hence the variance is not constant, it depends on t and 
therefore increases as t increases. 

 Autocovariances: Suppose 1<t<s then γt,s = Cov(Xt, Xs) = tσ2.

 Alternatively, γt,s = min(t, s)σ2.
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Autocorrelations of RW

 Autocorrelations: ρt,s = Cov(Xt, Xs)/sqrt(Var(Xt)sqrt(Var(Xs).

 Hence: ρt,s = sqrt(t/s).

 Examples: ρ1,2 = sqrt(1/2) = 0.707,  ρ8,9 = sqrt(8/9) = 0.943 and 

ρ1,5 = sqrt(1/5) = 0.447. ρ1,50 = sqrt(1/50) = 0.014.

 Notes: 
 1) The values of X at neighbouring time points are more and more strongly correlated as 

time goes by, i.e., see ρ1,2 vs. ρ8,9.

 2) The values of X at distant time points are nearly uncorrelated, i.e., see ρ1,5 vs. ρ8,50.

 Consider: Cov(Xt, Xt-k) = (t – k)σ2.

 Hence: ρk = sqrt[(t – k)/t].

 This is a very important result to detect non-stationarity.

 For the first few autocorrelations, the sample size t will be large relative to the 
number of autocorrelaions formed.

 For small values of k , the ratio [(t – k)/t] is approximately equal to unity.

 Thus, autocorrelations  will show a slight tendency to decay. 
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An Example

 Consider an AR(2) process:  Xt = φ1Xt-1 + φ2Xt-2 + εt

 If the autoregressive parameters satisfy stationarity 
conditions, i.e., φ1+ φ2 < 1 or -φ1+ φ2 < 1 and |φ2| < 1 the 
process is stationary.

 If, however, φ1+ φ2 = 1, (unit autoregressive root) the 
process is not stationary and it becomes an ARIMA(1, 1, 
0) process.

 To see this substitute for φ1 = 1 – φ2, then the process is 
written as; Xt = (1 – φ2)Xt-1 + φ2Xt-2 + εt

Xt – Xt-1 = – φ2(Xt-1 – Xt-2)  + εt

 This process is written as: ΔXt = – φ2 ΔXt-1 + εt.
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