Time Series
Analysis
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Time Series

O A time series is a sequence of data points, measured
typically at successive times spaced at uniform time
intervals, i.e., daily exchange rates, weekly stock returns,
monthly interest rates and annual GDP.

o We denote a time series as X, fort=1,2, ..., n.
The notation is very different that cross section data, i.e., X;.

o X, contains two important elements: a) the time of reference
tand b) the magnitude of the series at time t.

o The hierarchy of the sequence of the data is also very
important.

O
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ARIMA Models

In regression analysis the objective is to explain the
behaviour of one variable as a function of several other
variables, i.e., Y = (X, X,, ... X,).

In time series analysis this objective does not exit.

In time series analysis the behaviour of one variable is
explained by its past behaviour.

Thus, using the Box and Jenkins (1970) methodology the
objective is to identify the best fitted model obtained by a
class of models known as ARIMA models.

ARIMA stands for AutoRegressive Integrated Moving
Average Processes.
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Stationary Processes

The time series analysis begins with the definition of a stationarity.
Stationary process is the process that converges to its long run equilibrium.
It is also a process that its properties are well defined and therefore can be
analysed.
More formally, a process is said to be strictly stationary if its properties are
unaffected by a change of time origin and its joint probability distribution at any
times ty,t,,..,t;, must be the same as the joint probability distribution at times t,.,
tou - Emslo Where K is an arbitrary shift in time (k is an integer number).
A simpler version of the above definition for stationary is given by the concept
of weak stationarity.
A process is said to be weakly stationary if it satisfies the following three
conditions:

The mean of the process is constant through the time: E[X,] = u for all t.

The variance is constant through the time: Var[X,] = o2 for all t.

The covariance between any two values of the series depends only on their distance
apart in time, not in the absolute location in time: Cov(X,, Xi) = Yk
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Autocovariances

o The quantities y, are called autocovariances for k= .... -1, 0,
I...

O These quantities are population autocovariances.
o Notes:

1) v, = Var(X,) = o which is the variance of the series.
2) v = v, from stationarity.

o The quantities c, are called sample autocovariances.

== Y (X, = (X, - X)

t=k+1

o where x=13x,
n
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Autocorrelations

o The population autocorrelations p, are defined as:

Cov(X,,X,_
o, =Corr(X,, X, )= (X, Xy ZA:Lkzzﬁ
MNar(X)\Var(X,,) oo o 7,

o Note:
1)pe=1
2) p. = p from stationarity.
O The graph of a set of autocorrelations is known as

carrelogram, i.e., graphical presentation of p, for values of
k=0,1,2,....
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The white noise process

O The term white noise process comes from the
engineering area as a random signal.

f‘f:-r., .'.l[, F-"II'TM:'-'] M"jﬂ ﬂﬁ-ll [ ﬂwl{jnl“ b|| ||1

O This process has some unique characteristics that
have been used in econometrics analysis also, i.e.,
the error term in any regression model.
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The simplest example - W.N.

o As in econometrics, the White Noise (W.N.) process,
denoted as ¢, has the following characteristics:
Mean zero, i.e., E[e] = 0 for all t.
Constantvariance, i.e., Var[g] = o2 for all t.
Uncorrelated values, i.e., Cov(g, &) =0 for t #s.

o Thus, this process has values of p,, such that:
po=1and all other p,=0fork=1,2, ...
o Graph the correlogram of this process.
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The sample autocorrelations

The sample autocorrelations r, are defined as:

3 (X, = X)X, — X)

— — t=k+1
r=-%=

n

c 2 (X =X)?

t=1

For moderately large samples, the sample autocorrelations are
approximately normally distributed.

Ther,’s of a white noise process have mean zero and variance:
n—k
n(n+2)

when Kk is small relative to n.

Var(r,) = or Var(r,)~ 1
n
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The objective

The aim in time series analysis is to explain what will happen in the
future in terms of what is already known.

In this sense, the mean and the variance of a time series are of
limited value.

The most relevant information is likely to come from
autocovariances vy, and furthermore from the autocorrelations p,.

So the objective in time series analysis can be summarized as
follows:

Data _— Model
how to obtain

J—

Me estimates P
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The AR(1) Process

A stationary time series with mean zero, i.e., E(X,)=0, is generated by an
AR(1) process as follows:

Xi= X1 + &
where|p| <1,t=1, 2, ..., n and g, is a white noise process.

The model presents short run behavior, whereas the long run behavior is
obtained by recursively substituting lag values of X.

Hence,

0

n-1 )
Xt :(/’nxo +Z¢’I€t—i or Xt = Z(”Igt—i
i=0 i=0
Since, [p| <1 =» ¢" — 0asn — .
Thus the long run behavior of the series is expressed as a function of .
Example Y in Macroeconomics.
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Autocorrelations of AR(1)

The autocovariances of an AR(1) process are:

Yo = 0?/(1 - ¢?) and y, = @y, 4 for k> 1.

Note that for the existence of y, = |o| < 1.

The autocorrelations of an AR(1) process are:
Po=1,p;=¢and p, = @p,, fork>2 or p, =X fork>0.
Note that p, go to zero as k increases.

For ¢ =0.8 = p, =0.8, p, = 0.64, p; =0.512, p, = 0.4096 etc.

For ¢ =-0.8 > p, =-0.8, p, = 0.64, p, = -0.512, p, = 0.4096
etc

Thus, the autocorrelations follow the model.

Prof. Christos Agiakloglou 12



Pr

Pro

The AR(1) with mean

X~ AR(1) with E(X,) = p #0 for all t.

The model: X, - p=¢(X. ;- W) + g

Since the autocorrelations are not affected by the
mean the p, will behave as previously presented.
Constant versus Mean.

Consider the SRM: X, = a + BX; + &

If both models can equally be estimated then = ¢
and o= (1 —-o@)usopu=a/(l-o0e).

of. Christos Agiakloglou 13

The Backshift operator

The Backshift operator B is defined as:
BIX, = X,; where j > 1. For j =0 =»B%X, = X,.
AR(L): X=X, + & =2 (1-0B)X, = ¢,
Thus, X,=1/(1-¢B)g,=[1+¢B + ¢?B2+ ... Je.
So, the AR(1) process can be written as linear process of
infinite past values of the error term.
This is the long run behavior of the AR(1) process.

To ensure that the root of the 1/B — ¢ = 0 must be less that
one.

The series is the infinite sum of a geometric process of ;.
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The AR(2) Process

A stationary time series with mean zero, i.e., E(X,) =0, is
generated by an AR(2) process as follows:

Xi= 01 X1+ 02 Xi2 + &
where @+ @, <lor-p;+ ,<land|p,<1,t=1,2,...,nand g is
a white noise process.

The model presents short run behavior, whereas the long run
behavior is obtained by recursively substituting lag values of X.

Alternatively, (1-¢,B- (pzzBZ)Xt =g >

Xi=1/(1— 9B —,Be.
Thus, the AR(2) can be written as a linear process with infinite
error terms which is the long run behavior of the series.

To ensure that the roots of the polynomial 1/B? — ¢,1/B—¢,=0
must be less than one. {¢,+ @,<1o0r-¢;+@,<1 and o, < 1}
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Autocovariances of AR(2)

The autocovariances of an AR(2) process are:
1-9,) 2
2 2 o
(1+(/72)[(1_¢2) _(/’1]

Since vy, > 0, then (1 — ¢,) >0 = |o,| < 1.
Also, (1 + ¢)[(1 - 02)? — @121 > 0. Since || <1 > (1 +¢,) >0.
Thus, [(1 - 2)? = 921> 0> [(1 - @z) — @11 [(1 — 92) + ¢1]1> 0.
SO, 1-0;— ;>0 +9,<landl -, + ;>0 -0, +¢,<1.
Moreover, y; = [@1 / (1 — @)1 vo & v2=[9:2/ (1 —92) + 9] vo.
All other autocovariances are defined as:

Yk = O1Yk1 T ©oYk.o for all values of k > 3.

Yo =
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Autocorrelations of AR(2)

The autocorrelations of an AR(2) process are:
p1= 9 /(1- )
p2=[0:2/ (1 - ) + )]
Pk = P1Pk1 T Popy, for all values of k > 3.
Hence, for values of k > 3 the autocorrelations
behave as the AR(2) model.

The first two autocorrelations are used for the
initial conditions.

The autocorrelations decay toward zero.
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The AR(2) with mean

X;~ AR(2) with E(X,) = n # 0 for all t.

The model: X; - p= @y (Xp1 - 1) + (X - 1) + &

Since the autocorrelations are not affected by the mean the
py Will behave as previously presented.

Also, (1 - @B —0,B?)(X;— ) = &,

Constant versus Mean.

Consider the SRM: X; = o + B, X4 + B X + &

If both models can equally be estimated then : B,=¢,, B,=0,
and o= (1— ¢y — @)p S0 p=0o/(1 -9, — ¢y).
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The AR(p) Process

O A stationary time series with mean zero, i.e., E(X,) =0, is
generated by an AR(p) process as follows:

_ _ X = P1Xpg t P Xp ot OpXep HE
glsSa white noise process.

o The model presents short run behavior, whereas the long run
behavior is obtained by recursively substituting lag values of X.

o Alternatively, (1-¢;B—0,B°~... —¢,B?)X;=¢ =D
Xi=1/(1-¢:B— ... — @B
o Thus, the AR(p) can be written as a linear process with infinite
error terms which is the long run behavior of the series.

O Toensure that the roots of 1/BP — ¢;1/BP* — ... ¢, = 0 must be less
than one.
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Autocovariances of AR(p)

O The autocovariances of an AR(p) process are:
1 2

= O
1= = PoPr- =P,
O Then, up to the order of the AR process, that is the first p
autocovariances are used for the initial conditions.

O After the order of the process all other autocovariances are
defined as:

Y = P1Vka t Oa¥io T --- T OpYip for all values of k > p+l1.

7o
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Autocorrelations of AR(p)

To obtain the first p autocorrelations we use the Yule-Walker
equations:

PL=@1F Qprt P3p3t ...+ Qppp g
P2=@1P1 T P2t P3pt ...+ Qppp
Pp = P1Pp1t PoPp2 t P3pp3 T ... TP

These equations will give us a system of p equations with p
unknown.

The first p autocorrelations are used for the initial conditions.

All other autocorrelations follow the AR(p) model, i.e.,
Pk = O1Pka1 T PoPyz T -+ PpPy.p for all values of k = p+1.
The autocorrelations decay toward zero.
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The MA(1) Process

A time series with mean zero, i.e., E(X,) =0, is generated by
a MA(1) process as follows:

X =g —0¢g
where 0] <1,t=1,2, ..., n and ¢ is a white noise process.
The model presents only short run behavior.
If the mean of the process is not zero, i.e., E(X,) = p then:
Ki— =g -0y
It is interesting to note that only for one period inference can
be made.
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Autocorrelations of MA(1)

The autocovariances of a MA(1) process are:
Yo = (1 + 69)c?
v, = -00?
v = 0 for all values of k > 2.
Hence the autocorrelations of a MA(1) process are:
po=1
py=-0/(1 + 09)
pi = 0 for all values of k > 2.
Note that |p,| < 0.5, since (1 +0)2>0=> (1 + 02)>-20 >
[6)/(1 +62)<0.5
Thus, only the first autocorrelation is not zero and all other are zero.
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Invertibility

Invertibility means that an MA process can be expressed as an AR
process with infinite terms.

So for the MA(1) process we have: XE =g—0gy P X =(1-0B)g, 2>
g =1/(1-0B)X, =2 & =[1 + 6B + 6?B? + ... )X;
To inverta MA(1) process to an AR process we much have [0] < 1.

In other words, invertibility requires that the root of the polynomial
1/B — 6 = 0 must be less than one.

Inveribility also excludes the possibility of having same models with
different values of 0.

Consider: X; = ¢, — 0g,; and X, = g — 0¢,4, i.e.,0.5and 2.

Both models are identical since p, = -6/(1 + 62) = -0.4 but the first one
has smaller variance.

Inveritibility should not related to stationarity.
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The MA(2) Process

A time series with mean zero, i.e., E(X;) = 0, is generated by
a MA(2) process as follows:

X =& — 018y — 058,

where ¢, is a white noise process.
For invertibility, i.e., X, = (1- 6,B — 6,B?)g, =

& = 1/(1- 6,B — 8,B?)X,, the roots of the polynomial:
1/B2—- 6, 1/B — 6, = 0 must be less than one which means
The model presents only short run behavior.
If the mean of the process is not zero, i.e., E(X,) = for all t
then: X, — n =g — 0,81 — 0,8,
We can make inference only for two periods.
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Autocorrelations of MA(2)

The autocovariances of a MA(2) process are:
Yo= (1 + 6.2 +6,%)c?
1= 0,(0, - 1)o?
¥, = -0,07
v = 0 for all values of k > 3.
Hence the autocorrelations of a MA(1) process are:
po=1
p1=[0:(0, — 1)J/(L + 0,2+ 6,7)
P2 = -0,/(1 + 0,2+ 0,7)
py = 0 for all values of k > 3.

Thus, only the first two autocorrelations are not zero and all other are
zero.
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The MA(Q) Process

A time series with mean zero, i.e., E(X;) = 0, is generated by
a MA(q) process as follows:

Xt = St - elgt_l - ngt_z T oeee T qut_q
where ¢, is a white noise process.
For invertibility, i.e., X; = (1-6,B—... - 0,B%¢, >
g =1/(1-0,B—... - 0,BNHX,

the roots of the polynomial: 1/B9—0, 1/B%* — 0, =0
must be less than one.

If the mean of the process is not zero, i.e., E(X,) = p then:
Xi—n=g—018 — 08— ... — Og&q

Alternatively, X, —p=(1-6,B— ... - 0,B%eg,.
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Autocorrelations of MA(Q)

The autocovariances of a MA(q) process are:
Yo=(1+62+ ... +09)c?
vk # 0 for all values of k <q.
Yk = -0g0% for k = q.
v« = 0 for all values of k > q+1.
Hence the autocorrelations of a MA(1) process are:
po=1
pi # 0 for all values of k <q.
P = -0/(1+ 0,2+ ... + 62 fork=q.
pi = 0 for all values of k >p+1.

Thus, only the first q autocorrelations are not zero and all other are
zero.
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ARMA(p, q) models

o A time series with mean zero, i.e., E(X,) =0, is generated by
an ARMA(p, q) process as follows:

Xi= 01 Xia T 0 Xip + ot @pXy +e — 0180 — 05805 — ...~ O
where ¢, is a white noise process.
o Equivalent, (1-¢,B-...—9,BP)X; = (1-6,B - ... - 6,B%¢, >

¢(B)X, = 0(B)e,
o Conditions for stationarity and inveribility must be satisfied.
No common roots.

o If the process has mean then it is written as:
@(B)(X;— 1) = 6(B)e;

O
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Autocorrelations of ARMA(p, q)

The autocovariances of an ARMA(p, q) process are:

Fork<q = vg, V1, ---» Yk depend on ¢’s and 0’s.

Fork>q 2 vk = Q1Y + QoY+ oo T QpYicp:
The autocorrelations of an ARMA(p, q) process are:

Fork <q = py, p1, ---, px depend on ¢’s and 0’s.

Fork>q = pi = @1pi1 + @2pka t - PpPicp:
Rule: For k > g the autocorrelations of an ARMA(p, q) model
behave as an AR(p) model. The moving average parameters
play role only to compute the first g autocorrelations.
Note the difference between the constant and the mean of the

series is determined only by the presence of the autoregressive
parameters.
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The ARMA(1, 1) Process

o Atime series with mean zero, i.e., E(X,) = 0, is generated by an
ARMA(1, 1) process as follows:
Xi= X1 + &~ Oegg
where|p| <1, <1,t=1,2,...,nand g is a white noise process.
o Note:
If ¢ = 0, the process is a MA(1).
If 6 =0, the process is an AR(1)
If ¢ = 6, the process is a white noise.
o Theprocess is written also as: (1 — ¢B)X; = (1 — 6B)g,
If it is stationary X, = [1/(1 — ¢B)](1 — 6B)s,
If it is invertible g, = [1/(1 - 6B)](1 — ¢B)X;
o Ifthe mean of the process is not zero, i.e., E(X,) = y, then:
(1- 9B)(X,— ) = (1 - 0B)e _
By recursively substituting: X; = g + (¢ — 0)Zj-; ¢/ &.

[m]
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Autocovariances of ARMA(L, 1)

O The autocovariances of an ARMA(1, 1) process are:
Yo = [1—2¢0 + 07]/(1 - ¢%)c?
$1£0=0,y,= 1/(1 - ¢?o? D> AR(1)
+1f9=0,y,=[1+ 6202 MA(1)
+1fe=0,y,=0?>=> W.N.
1= [(1 - 90)(9 - 0)]/(1 - 9?)0?
Yk = 0Yy-q for all values of k > 2.

O The autocovariances behave like the AR(1) process for
values of k> 2.
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Autocorrelations of ARMA(1, 1)

The autocorrelations of an ARMA(1, 1) process are:
po=1
p1=[(1 - 90) (e - 0)]/[1 - 290 + 67]
+1f0=0,p; =0 = AR(1)
«If =0, p;=-0/[1+67] > MA(1)
+1fo=6,p; =0=>W.N.

P2= 0Py
Pk = PPy OF p, = 9K1p, for all values of k > 3.

Note that 6 appears only on p, and all p, for k > 2 behave
like an AR(1). The only difference with an AR(1) is the
initial values of p; which includes the value of 6.
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Integrated Processes

Let X, be a non-stationary process in levels, i.e., the mean of the process is not constant
through time.

However, this process can be stationary in first difference, i.e., W, = X, — X1 = (1 - B)X;

Non-stationary processes occur when at least one of the characteristics of stationary process
is violated.

Recall that a stationary process has constant mean and variance and the covariance between

any two values of the series depends only on their distance apart in time, not in the absolute

location in time.

Taking differences we hope that the process will become stationary.

The number of differences characterizes the order of Integration denoted as I.

In general we write: W, = (1 — B)? X; where d is a non-negative integer number , i.e., d =0,
ifd =0 => W, = X, and the process is stationary 1(0).
ifd=1=> W, =(1-B)X;=X;— X1 = AX;and the process is I(1) or stationary in first differences.
ifd=2=> Z,=(1-B)2X,= (1 - B)W, = W, - W,; = AW, = X, — 2X,, + X, and the process is 1(2)
or stationary in second differences.

An ARIMA(p, d, q) model is written as: ¢(B)(1 — B)4X; = 0(B)g;.

Non-stationary processes do not converge to long run equilibrium and they are explosive.
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A special case: Random Walk

Consider the AR(1) process: X; = oX.; + &
If |o| <1 the process is stationary.
If ¢ =1 the process is non-stationary (unit autoregressive root).

Suppose @ =1=2 X, =X, +&=D2 X - X, =D AX =g 2>
(1-B)X;=¢.
The process X, — X, ; = ¢ is known as Random Walk process.
By recursive substitution we get: X; = X, + Zi_;'s;.
Assuming that the initial value is zero, i.e., X, = 0, then
X =2 'g
is simply the sum of past values of the error term.
Short run versus long run.
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Characteristics of RW

The mean of the process is zero, i.e., E(X,) = 0.
The conditional mean is the past value, i.e., E(Xt-1) = X,;.

For the Short Run the best we can do to predict X, is X;
whereas for the Long Run you can do nothing.

The variance of the process is Var(X,) = Var(Z;.;'g) = to®.
Hence the variance is not constant, it depends on t and
therefore increases as t increases.

Autocovariances: Suppose 1<t<s then y,; = Cov(X;, X) = tc?.
Alternatively, y,; = min(t, s)c?.
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Autocorrelations of RW

Autocorrelations: p, = Cov(X,, Xs)/sqrt(Var(Xysart(Var(X).

Hence: p; = sqrt(t/s).

Examples: p;, = sqrt(1/2) = 0.707, pgg = sqrt(8/9) = 0.943 and
p1s = Sqrt(1/5) = 0.447. p, 55 = sqrt(1/50) = 0.014.

Notes:

1) The values of X at neighbouring time points are more and more strongly correlated as
time goes by, i.e., see p; , VS. pgg.

2) The values of X at distant time points are nearly uncorrelated, i.e., see p; 5 VS. pgso.
Consider: Cov(X;, X = (t —k)o%
Hence: p, = sart[(t— k)/t].
This is a very important result to detect non-stationarity.

For the first few autocorrelations, the sample size t will be large relative to the
number of autocorrelaions formed.

For small values of k , the ratio [(t — k)/t] is approximately equal to unity.
Thus, autocorrelations will show a slight tendency to decay.
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An Example

Consider an AR(2) process: X, = ¢ X3 + 0, X, + &
If the autoregressive parameters satisfy stationarity

conditions, i.e., ¢;+ ¢, < 1or-¢;+ ¢,< 1and |p, <1 the
process is stationary.

If, however, ¢,+ ¢, = 1, (unit autoregressive root) the
process is not stationary and it becomes an ARIMA(1, 1,
0) process.

To see this substitute for ¢, = 1 — ¢,, then the process is
written as; X, = (1 — @)X, + 0, X, + &=

Xi= X1 = = 0Ky — X)) + &
This process is written as: AX, = — ¢, AX; + &,
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