Building
ARIMA Models
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The Methodology

o Given atime series X, t=1, 2, ..., n, the objective is to
select the best fitted ARIMA(p, d, g) model.

o The methodology of building ARIMA models according to
Box and Jenkins consists of three stages.

o Stage 1: Identification Stage or Model Selection.
Autocorrelations and Partial Autocorrelations.

o Stage 2: Estimation Stage or Parameter Estimation.
Estimate the unknown autoregressive and moving
average parameters.

o Stage 3: Checking Stage or Model Checking.
Check the estimated results.
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Stage I: Identification

0 The two most useful tools in any attempt at
model identification are
the sample autocorrelation function and
the sample partial autocorrelation function.

O These two functions will provide valuable
information with regard to stationarity and to
the true generating process.
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Sample Autocorrelations

o Given atime series X;, t =1, 2, ..., n, the sample autocorrelation
function, which is the plot of the sample autocorrelations

Z(Xt - )?)(thk - )?)
— t=k+1
Z (Xt - >?)2
=1
againstk, where k=1, 2, - ., provides an obvious estimate of the
autocorrelation function p, of the underlying stochastic process.
o Hence the set of r,’s defines the sample autocorrelation function and the
graphical presentation of these values defines the correlogram.
o If these estimates do not decay towards zero, the process is not
stationary and therefore it needs to be examined in first differences.
o Furthermore, if the process is stationary these estimates will provide
useful information with respect to AR or MA components.

i
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Partial Autocorrelations

The partial autocorrelation coefficient ¢, (population)
indicates the autocorrelation (partial or conditional) between
X.and X, for given values X, X5, -, Xixs1-

To determine the value of ¢,, we need first to construct the
two errors, i.e.,

Xit2, ket = Ke = 01 Xiq = 02X — oo = QraXigenn

Xiktkr k2t = Kk = P1Xpprr = PoXpgerz = -+ = Pa X
Based on these two values the partial autocorrelations are
computed as regular autocorrelations.
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Determination of PA

The partial autocorrelation coefficient ¢y, are computed as
follows:
¢11 = Corr(X;, X.1) = Cov(Xy, Xpp)/Var(Xy) = p;
020 = COr[X; — @1 X1, X2 = 01X10) = [p2 — p2?J/[1 — py7]
Pa3 = COrrX; — @1 Xe1— 92Xi2 4 Xiz — 91Xe1 — 02X12) =
and so on.
Moreover, the partial autocorrelation function is related to
regression analysis.
If X; ~ AR(p), that means that only the first p partial
autocorrelations exist.
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PA for AR(p) processes

o Consider X, ~ AR(1), then ¢, are computed as follows:
P11=pP1=¢1
¢22=[p2—pV[1-p7] =0
¢ = 0 for all values of k > 3.

o Consider X, ~ AR(2), then ¢, are computed as follows:
¢11=p1#0 [Recall: p; = @1 /(1 - ¢2) & po = @1p1 + ¢ ]
022 = [p2— P12V - pi?] = 0,
¢ = 0 for all values of k > 3.

o Similarly, if X, ~ AR(p), that means
¢ 7 0 for all values of k <p.
¢ = 0 for all values of k > p+1.
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PA for MA(Q) processes

o If the Moving Average process is invertible that means that it
can be written as an AutoRegressive process with infinite
parameters.
O Hence, the partial autocorrelations of a MA(q) process will
behave very close like the autocorrelations of an AR process.
o Consider X, ~ MA(1), then ¢, are computed as follows:
@11 = p; [Recall: p; =-0/(1 + 69)]
02 = [P — P AV[L - p 2] = [-02 /(L + 62+ 0] £ 0
Qe L ask 1.

o Similarly, if X, ~ MA(2).
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Comments on PA

The autocorrelations, p,, of a pure autoregressive process decay towards
zero with increasing lag length k. By contrast, for a pure moving average
process of order g, the autocorrelations cut off abruptly meaning that they
are all zero for k bigger than g.

The partial autocorrelations, ¢, of a pure moving average process decay
towards zero with increasing lag length k. by contrast, for a pure
autoregressive process of order p, the partial autocorrelations cut off
abruptly meaning that they are all zero for k bigger than p.

The behavior of ARMA(p, g) models is in contrast to the properties we
have already noted of pure AR and pure MA models. The lack of abrupt
cuts in either the autocorrelations or in partial autocorrelations makes it
more difficult in practice to distinguish among alternative mixed models.
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Sample Partial Autocorrelations

The Sample Partial Autocorrelation function is usually
calculated by fitting autoregressive models of increasing order.
The estimate of the last coefficient of each model is the sample
partial autocorrelation coefficient, denoted as ¢ hat.
Also, estimates of the partial autocorrelations can be obtained
through the sample autocorrelations (Yule-Walker equations),
i.e.,

k=1=>r, =9

K=2 =00 + 0, 1 &L=0y" 11+ 02" D ¢x = ...
Hence, for the identification stage it is important to have the
correlogram of the sample autocorrelations and partial ones.
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Stage Il: Parameter Estimation

Assuming that a particular ARIMA(p, d, gq) model is selected
the next step is to estimate the unknown parameters p, d and g.
If d # 0, it is necessary to difference the series d times so that
to get stationarity.

The new series W, = (1 — B)¢X, will then be used to obtain
estimates for the autoregressive, moving average and the mean
of the series parameters.

Frequently, after differencing, it is reasonable to assume that
the new series has mean zero, in which case the parameter p is
dropped.

The estimation procedure for time series is not unique.
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Methods of Estimation

There are three methods of estimation.
I) Conditional Least Squares (CLS)

Minimization of the sum of squares (SS) of the white noise error
term.

Computational algorithms for the numerical min SS are widely
available.

These algorithms are based on non-linear regression procedures
that provide point estimates and standard errors for statistical
inference.

The parameter estimators have distributions that are close to
normal.

Note that different ARIMA models will use different sample
size. Loss of observations depending on the ARIMA model.
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Methods of Estimation |1

I1) Maximum Likelihood Estimation (MLE)

Maximization of the log likelihood function using standard non-
linear algorithm.

Initial estimates for the parameters are obtained directly from the
sample autocorrelations employed in the identification stage.

Convergence criteria:
Change in the values of SSE; ASSE
Change in the value of parameter estimates: A¢”
Number of iterations.

Newbold (1974) and Ansley (1979) in Biometrika have provided
algorithms.

Note that all ARMA models will use the same number of
observations.
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Methods of Estimation 111

I11) Unconditional Least Squares (ULS)

Nonlinear estimation and minimization of the sum of squares
(SS) of the error term is carried out by numerical iterations.

The error terms are viewed as “forecast” backward in time.

For this reason, they frequently called backforecasts or
backcasts, whereas the method is known as Backasting Method.

Ansley and Newbold (1980) J. of Econometrics, have suggested
to use MLE.
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Comment on Parameter Estimation

In Regression Analysis we will the same estimates and standard
errors using any computer package that does OLS.

This is not true in Time Series Analysis.

The standard ARIMA computer packages will yield somewhat
different parameter estimates using identical data set.

Very often these differences will be of no great practical
significance, in the sence that quit similar forecast will result.

This is true only for simple models, not for complicated ones.

See Newbold, Agiakloglou and Miller (1994), J. of Forecasting, 10,
573-581, “Adventures with ARIMA software”.

Rule: Before you estimate an ARIMA model, make sure that you
know what the program does for you.
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Stage I11: Model Checking

Two major approaches to model checking have traditionally been used.
1) Fit a more elaborate model

Fit a model that contains additional parameters.

If an ARMA(p, q) model is fitted, then fit an alternative model with

one or two autoregressive parameters and then with one or two moving
average parameters.

Note: It is not a good strategy to add both extra autoregressive and
extra moving average terms, because if the model is adequately
specified, the additional parameters will in effect cancel out (common
roots).

The resulting parameter estimators of the augmented model will have
very large variances.

For example: if X, is a white noise process and we fit ARMA(1, 1)
model, then ¢ = 6.
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An example

o Newbold, Agiakloglou and Miller (1993) using the Nelson
and Plosser (1982) log U.S. unemployment rate series found
that the best fitted model was an ARIMA(1, 1, 2), that is:

(1-0.57B)(1 - B)X, = (1- 0.45B — 0.55B?)g,
which is (1-0.57B)(1 -B)X; = (1-B)(1 + 0.55B)¢,

o This suggests over-differencing.

O The best fitted model for d = 0 is the ARIMA(L, 0, 1) , that is:

(1-0.50B)(X;— ) = (1 + 0.62B)s,

0 A model that is very close to the one above after the

cancellation of the common root.
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The Portmanteau test — |

o The second approach to model checking is the portmanteau test.

o This approach is based on the fact that is the model is correctly
specified, the error term will be white noise, which means that all
autocorrelations of these errors will be zero.

o Inpractice the true errors will be unknown, but they can be estimated
by the residuals of the fitted model.

O The autocorrelations of the residuals are then calculated:

n
18k
¢ t=k+1
r =

n
>

t=1
O The test is carried out based on these autocorrelations.
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The Portmanteau test — 11

O The portmanteau test is based on the squares of the first m residual
autocorrelations where m is a moderate large number - at least ten.

O The test introduced by Ljung and Box (1978), Biometrika, is based on
the Q statistic: Az

m r:
Q=n(n+2)) ——
= n—]

o This is modification of the Box and Pierce (1970), JASA, whereas
similar result can be found in Davies, Triggs and Newbold (1977),
Biometrika.

o The Q statistic follow a X2 distribution with (m — p — q) degrees of
freedom regardless of the presence of the mean of the series or
constant.

o IfQ<X?%, ., the null hypothesis will be accepted and the model will
be correctTy specified.
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Identification in Practice — |

O “The principle of parsimony”

O “A small model is always preferable to a large”

o Information Criteria

1) Akaike Information Criterion: AIC = In(SSE/n) + 2k

I) Schwarz Bayesian Criterion: SBC = In(SSE/n) + (k/n)In(n)
where

SSE = Residual Sum of Squares

n = number of observations

k = number of parameters estimated (p+qg+possible constant term)

o Select the best fitted model such that the value of AIC and SBC is the
smallest among alternatives.

o Both criteria min the same function with different penalty function.

O To adequately compare the alternatively models, the number of

observations should be kept fixed.
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Identification in Practice — |1

AIC has the tendency to select over-parameterized models.
SBC selects small models and it is asymptotically consistent.
If d =0 fit ARMA(p, q) models with constant for allp+ q <5 and
select the best fitted model according to the min value of AIC or SBC.
If the value of d cannot be determined then:

Fit ARIg/IA(p, 0, q) with constant and without the first observation for all

+qg<S5.

1lgit AqRIMA(p, 1, q) with no constant for allp + q < 5.
Use AIC and SBC to select the best fitted model.
The omission of the first observation for the undifferenced series is
mandatory to allow comparability.
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Forecast

Once an ARIMA model has been fitted to a time series, the
projection forward of that model to derive forecast values is quit
straight forward.

Consider: ARIMA(p, d, g):

(1-¢:B—... —9,B)(1 - B)IX,=(1-06,B—... - 0B,

which is

l1-o,B-... - d>p+dBF’+d)Xt =c+(1-06,B—... - 6B
where

l1-o.B-...— d>p+dBP+d) =(1-9B—... —,B")(1 - B)d
andc=(1-¢;—... —@pu
The model can be written as:

Xi=Ct O Xy + .. +@p g Xipg & — 0180 — ... — Ogerg

The above model can be used to generate forecasts.
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Prediction

o Given the fitted model:

O
O

Xi=CH O Xy + .+ OpgXipg +&— 018 — ... —Bgeg
And starting at time n, we can predict future values of X,y
In particular, setting t=n+h we have:

Xt+n =C+ (D1Xn+h_1 + ...+ (I)p+dxp+h_p_d +8n+h — 918n+h_1 — .. 6q8n+h-q

O

O

O

) The parameters ¢, @, ..., @4, 04, ..., O, are replaced by their
estimates derived from the parameter estimation stage.

IT) For t < n, X, will be a known observation. For t > n X, is
replaced by its forecast made at t.

III) For t <n, the error term ¢, is replaced by its estimate, that is,
the residual from the fitted model. For t > n, the unknown ¢, is
replaced by its beast forecast, which is zero.
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Example of an AR(1) Process

Consider an AR(1) process: Xi= oXiq + &
where |p| < 1,t=1, 2, ...,n and g, iS a white noise process.
Forecast: X, (h)=gX, (h-1)+2,,,

h=1 X,@=9X,(0+,,=X,0=¢X,
h=2 X,@=&,0=4X,
Ingeneral:  X,(h)=¢"X,

With mean: X, (h) = u+¢"[X, — ]

Note: 1) since || < 1, the forecast will go to the mean of the
series and 2) the forecast depends on X,..

Prof. Christos Agiakloglou 24



[m}

Forecast error of AR(1)

One step-ahead forecast error:

8n(:l-) = Xn+1 - E[Xn+1|xn’ Xn—la ERED) Xl] = (Pxn T Enyy - (Pxn =&

[m]
[m]

Thus, Var[e,(1)] = o2 (replace by its estimate).
Forecast error for longer leads:

&n(N) = Xnan = EDpenl Xy Xt - Xi] = Enen + @€nang + 0%6ninp + ... + (Ph_18n+1

[m]

[m}

[m}

[m}

h-1
We can write: &, (h) = Z (ngmrhfj

The Variance is: Ji;ar[g (h)]= Gzhi(pu
=0
For summing finite geometric series: Var[e, (h)] = o2 1- (/’Zh
, n l_¢)2
For long lead times:  Var[e, (h)] ~ 1 g >~Var(X,) =7,
—Q
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Example of a MA(1) Process

Consider a MA(1) process: X; = g — 0g;,
where 0] <1,t=1,2, ..., n and ¢ is a white noise process.

A

Forecast:  x (h)=2  —éz
h=1 X, Q)=&,,-0¢ =-0¢
h>2 X, (h)=0

Wlth mean. )zn (h) = /:2 + én+h - é‘émh—l

h=1 X,O)=4+4,.,-0¢ =p-62

h>2 X, (h)= A

Note: The forecast depends on recent values of residual.
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Forecast error of MA(1)

One step-ahead forecast error:
€n(1) = X — EDXaa X, Xigs oo Xal = €1 — 08, — (-08y) = €04y

Thus, Var[e,(1)] = o2 (replace by its estimate).
Note: g,(1) ~ N(0, 62).
Then Construct Confidence Interval for X (1).
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General Comments for Prediction

Pure Moving Average Processes:

Have actual forecasts up to g periods ahead only that is up yo the order of
the moving average model.

After the order of the moving average model the forecast is the mean of
the series.
The forecasts depend on the most recent values of the error term
(residuals).

Pure Autoregressive Processes:
Have forecasts for large periods ahead.
The forecasts depend on the most recent observations of the series.
For very large periods ahead the forecast is the mean of the series.
Also for large periods ahead the variance of the forecast converges to the
variance of the series.

Mixed comments are valid for mixed models.
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Example of a R.W. Process

Consider Random Walk with drift process: X, = X, ; +u + &
Forecast: X (h)=X,(h-1)+a+5,,

h=1 X=X, 0)+4a+&.,=X,+A
h=2 X, (=X,+24
Ingeneral: X, (h)= X, +hz

If u# 0 the forecast does not converge for long leads h but
follows a straight line with slope p for all h periods.
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Forecast error of R.W.

One step-ahead forecast error:

8n(:l-) = Xn+l - E[Xn+l|xn’ Xn—l’ ) Xl] = Xn + I + Ent1— (xn + H) =&

[m]
[m]

Thus, Var[e,(1)] = o2 (replace by its estimate).
Forecast error for longer leads:

gn(h)h: )xn+h = EXnnl X Xogs oo Xq] = (X +hptgpg + o0 T epn) — (X +
n

[m}

[m}

[m}

[m}

h-1
€n (h) = z Enih-j
im0
Varlz, (h)] = ho?

We can write:

The Variance is:

In contrast to the stationary case, here the Var[g,(h)] grows without limit as

the forecast lead time h increases.

This property is characteristic of the forecast error variance for all non-
stationary processes.
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