
Building 

ARIMA Models
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The Methodology

 Given a time series Xt, t = 1, 2, …, n, the objective is to 
select the best fitted ARIMA(p, d, q) model.

 The methodology of building ARIMA models according to 
Box and Jenkins consists of three stages.

 Stage 1: Identification Stage or Model Selection. 
Autocorrelations and Partial Autocorrelations.

 Stage 2: Estimation Stage or Parameter Estimation.
Estimate the unknown autoregressive and moving 

average parameters. 

 Stage 3: Checking Stage or Model Checking.
Check the estimated results.
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Stage I: Identification

 The two most useful tools in any attempt at 

model identification are 

 the sample autocorrelation function and

 the sample partial autocorrelation function.

 These two functions will provide valuable 

information with regard to stationarity and to 

the true generating process.
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Sample Autocorrelations

 Given a time series Xt, t =1, 2, …, n, the sample autocorrelation 
function, which is the plot of the sample autocorrelations

against k, where k=1, 2, …, provides an obvious estimate of the 
autocorrelation function ρk of the underlying stochastic process.

 Hence the set of rk’s defines the sample autocorrelation function and the 
graphical presentation of these values defines the correlogram.

 If these estimates do not decay towards zero, the process is not 
stationary and therefore it needs to be examined in first differences.

 Furthermore, if the process is stationary these estimates will provide 
useful information with respect to AR or MA components. 
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Partial Autocorrelations 

 The partial autocorrelation coefficient φkk (population) 
indicates the autocorrelation (partial or conditional) between 
Xt and Xt-k for given values Xt-1, Xt-2, …, Xt-k+1.

 To determine the value of φkk we need first to construct the 
two errors, i.e., 

 Xt.t-1,t-2,..,t-k+1 = Xt – φ1Xt-1 – φ2Xt-2 – … – φk-1Xt-k+1

 Xt-k.t-k+1,t-k+2,..,t-1 = Xt-k – φ1Xt-k+1 – φ2Xt-k+2 – … – φk-1Xt-1

 Based on these two values the partial autocorrelations are 
computed as regular autocorrelations.
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Determination of PA

 The partial autocorrelation coefficient φkk are computed as 

follows:

 φ11 = Corr(Xt, Xt-1) = Cov(Xt, Xt-1)/Var(Xt) = ρ1

 φ22 = Corr[Xt – φ1Xt-1, Xt-2 – φ1Xt-1) = [ρ2 – ρ1
2]/[1 – ρ1

2]

 φ33 = Corr[Xt – φ1Xt-1 – φ2Xt-2 , Xt-3 – φ1Xt-1 – φ2Xt-2) =

 and so on.

 Moreover, the partial autocorrelation function is related to 

regression analysis.  

 If Xt ~ AR(p), that means that only the first p partial 

autocorrelations exist.  
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PA for AR(p) processes

 Consider Xt ~ AR(1), then φkk are computed as follows:

 φ11 = ρ1 = φ1

 φ22 = [ρ2 – ρ1
2]/[1 – ρ1

2] = 0

 φkk = 0 for all values of k ≥ 3.

 Consider Xt ~ AR(2), then φkk are computed as follows:

 φ11 = ρ1 ≠ 0  [Recall: ρ1 = φ1 /(1 – φ2) & ρ2 = φ1ρ1 + φ2 ] 

 φ22 = [ρ2 – ρ1
2]/[1 – ρ1

2] = φ2

 φkk = 0 for all values of k ≥ 3.

 Similarly, if Xt ~ AR(p), that means 

 φkk ≠ 0  for all values of k ≤ p. 

 φkk = 0 for all values of k ≥ p+1. 
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PA for MA(q) processes

 If the Moving Average process is invertible that means that it 

can be written as an AutoRegressive process with infinite 

parameters.

 Hence, the partial autocorrelations of a MA(q) process will 

behave very close like the autocorrelations of an AR process. 

 Consider Xt ~ MA(1), then φkk are computed as follows:

 φ11 = ρ1 [Recall: ρ1 = -θ/(1 + θ2)] 

 φ22 = [ρ2 – ρ1
2]/[1 – ρ1

2] = [-θ2 /(1 + θ2 + θ4)] ≠ 0 

 φkk ↓ as k ↑.

 Similarly, if Xt ~ MA(2).   
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Comments on PA 

 The autocorrelations, ρk, of a pure autoregressive process decay towards 

zero with increasing lag length k.  By contrast, for a pure moving average 

process of order q, the autocorrelations cut off abruptly meaning that they 

are all zero for k bigger than q.

 The partial autocorrelations, φkk, of a pure moving average process decay 

towards zero with increasing lag length k. by contrast, for a pure 

autoregressive process of order p, the partial autocorrelations cut off 

abruptly meaning that they are all zero for k bigger than p.

 The behavior of ARMA(p, q) models is in contrast to the properties we 

have already noted of pure AR and pure MA models. The lack of abrupt 

cuts in either the autocorrelations or in partial autocorrelations makes it 

more difficult in practice to distinguish among alternative mixed models.
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Sample Partial Autocorrelations

 The Sample Partial Autocorrelation function is usually 

calculated by fitting autoregressive models of increasing order.

 The estimate of the last coefficient of each model is the sample 

partial autocorrelation coefficient, denoted as φkk hat.

 Also, estimates of the partial autocorrelations can be obtained 

through the sample autocorrelations (Yule-Walker equations), 

i.e., 

 k =1  r1 = φ11
^

 k = 2  r1 = φ21
^ + φ22

^ r1 & r2 = φ21
^ r1 + φ22

^
 φ22

^ = …

 Hence, for the identification stage it is important to have the 

correlogram of the sample autocorrelations and partial ones. 
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Stage II: Parameter Estimation

 Assuming that a particular ARIMA(p, d, q) model is selected 
the next step is to estimate the unknown parameters p, d and q.

 If d ≠ 0, it is necessary to difference the series d times so that 
to get stationarity.

 The new series Wt = (1 – B)dXt will then be used to obtain 
estimates for the autoregressive, moving average and the mean 
of the series parameters.

 Frequently, after differencing, it is reasonable to assume that 
the new series has mean zero, in which case the parameter μ is 
dropped.

 The estimation procedure for time series is not unique.   
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Methods of Estimation

 There are three methods of estimation.

I) Conditional Least Squares (CLS)

 Minimization of the sum of squares (SS) of the white noise error 
term. 

 Computational algorithms for the numerical min SS are widely 
available.

 These algorithms are based on non-linear regression procedures 
that provide point estimates and standard errors for statistical 
inference.

 The parameter estimators have distributions that are close to 
normal.

 Note that different ARIMA models will use different sample 
size.  Loss of observations depending on the ARIMA model.
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Methods of Estimation II

II) Maximum Likelihood Estimation (MLE)

 Maximization of the log likelihood function using standard non-
linear algorithm.

 Initial estimates for the parameters are obtained directly from the 
sample autocorrelations employed in the identification stage.

 Convergence criteria:
 Change in the values of SSE; ΔSSE

 Change in the value of parameter estimates: Δφ^

 Number of iterations.

 Newbold (1974) and Ansley (1979) in Biometrika have provided 
algorithms. 

 Note that all ARMA models will use the same number of 
observations. 
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Methods of Estimation III

III) Unconditional Least Squares (ULS)

 Nonlinear estimation and minimization of the sum of squares 
(SS) of the error term is carried out by numerical iterations.

 The error terms are viewed as “forecast” backward in time.

 For this reason, they frequently called backforecasts or 
backcasts, whereas the method is known as Backasting Method.

 Ansley and Newbold (1980) J. of Econometrics, have suggested 
to use MLE.
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Comment on Parameter Estimation

 In Regression Analysis we will the same estimates and standard 
errors using any computer package that does OLS.

 This is not true in Time Series Analysis.

 The standard ARIMA computer packages will yield somewhat 
different parameter estimates using identical data set.

 Very often these differences will be of no great practical 
significance, in the sence that quit similar forecast will result.

 This is true only for simple models, not for complicated ones.

 See Newbold, Agiakloglou and Miller (1994), J. of Forecasting, 10, 
573-581, “Adventures with ARIMA software”.

 Rule: Before you estimate an ARIMA model, make sure that you 
know what the program does for you.
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Stage III: Model Checking

 Two major approaches to model checking have traditionally been used.

 I) Fit a more elaborate model

 Fit a model that contains additional parameters.

 If an ARMA(p, q) model is fitted, then fit an alternative model with 
one or two autoregressive parameters and then with one or two moving 
average parameters.

 Note: It is not a good strategy to add both extra autoregressive and 
extra moving average terms, because if the model is adequately 
specified, the additional parameters will in effect cancel out (common 
roots).

 The resulting parameter estimators of the augmented model will have 
very large variances.

 For example: if Xt is a white noise process and we fit ARMA(1, 1) 
model, then φ = θ.
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An example 

 Newbold, Agiakloglou and Miller (1993) using the Nelson 
and Plosser (1982) log U.S. unemployment rate series found 
that the best fitted model was an ARIMA(1, 1, 2), that is:

(1 – 0.57B)(1 – B)Xt = (1– 0.45B – 0.55B2)εt

which is           (1 – 0.57B)(1 – B)Xt = (1 – B)(1 + 0.55B)εt

 This suggests over-differencing.

 The best fitted model for d = 0 is the ARIMA(1, 0, 1) , that is:

(1 – 0.50B)(Xt – μ) = (1 + 0.62B)εt

 A model that is very close to the one above after the 
cancellation of the common root.
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The Portmanteau test – I 

 The second approach to model checking is the portmanteau test.

 This approach is based on the fact that is the model is correctly 
specified, the error term will be white noise, which means that all 
autocorrelations of these errors will be zero.

 In practice the true errors will be unknown, but they can be estimated 
by the residuals of the fitted model.

 The autocorrelations of the residuals are then calculated:

 The test is carried out based on these autocorrelations.
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The Portmanteau test – II 

 The portmanteau test is based on the squares of the first m residual 
autocorrelations where m is a moderate large number - at least ten.

 The test introduced by Ljung and Box (1978), Biometrika, is based on 
the Q statistic: 

 This is modification of the Box and Pierce (1970), JASA, whereas 
similar result can be found in Davies, Triggs and Newbold (1977), 
Biometrika.

 The Q statistic follow a X2 distribution with (m – p – q) degrees of 
freedom regardless of the presence of the mean of the series or 
constant.

 If Q < X2
m-p-q,α the null hypothesis will be accepted and the model will 

be correctly specified. 
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Identification in Practice – I 

 “The principle of parsimony” 

 “A small model is always preferable to a large”

 Information Criteria
 I) Akaike Information Criterion: AIC = ln(SSE/n) + 2k

 II) Schwarz Bayesian Criterion:  SBC = ln(SSE/n) + (k/n)ln(n)

where 
 SSE = Residual Sum of Squares 

 n = number of observations

 k = number of parameters estimated (p+q+possible constant term)

 Select the best fitted model such that the value of AIC and SBC is the 
smallest among alternatives.

 Both criteria min the same function with different penalty function.

 To adequately compare the alternatively models, the number of 
observations should be kept fixed.
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Identification in Practice – II 

 AIC has the tendency to select over-parameterized models.

 SBC selects small models and it is asymptotically consistent.

 If d = 0 fit ARMA(p, q) models with constant for all p + q ≤ 5 and 
select the best fitted model according to the min value of AIC or SBC.

 If the value of d cannot be determined then:
 Fit ARIMA(p, 0, q) with constant and without the first observation for all 

p + q ≤ 5.

 Fit ARIMA(p, 1, q) with no constant for all p + q ≤ 5.

 Use AIC and SBC to select the best fitted model.

 The omission of the first observation for the undifferenced series is 
mandatory to allow comparability. 
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Forecast

 Once an ARIMA model has been fitted to a time series, the 
projection forward of that model to derive forecast values is quit 
straight forward.

 Consider: ARIMA(p, d, q):

(1 – φ1B – … – φpB
p)(1 – B)dXt = (1– θ1B – … – θqB

q)εt

which is 

(1 – Φ1B – … – Φp+dB
p+d)Xt = c + (1– θ1B – … – θqB

q)εt

where

(1 – Φ1B – … – Φp+dB
p+d) = (1 – φ1B – … – φpB

p)(1 – B)d

and c = (1 – φ1 – … – φp)μ

 The model can be written as:  

Xt = c + Φ1Xt-1 + … + Φp+dXt-p-d +εt – θ1εt-1 – … – θqεt-q

 The above model can be used to generate forecasts.
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Prediction

 Given the fitted model:  

Xt = c + Φ1Xt-1 + … + Φp+dXt-p-d +εt – θ1εt-1 – … – θqεt-q

 And starting at time n, we can predict future values of Xn+h. 

 In particular, setting t=n+h we have:

Xt+n = c + Φ1Xn+h-1 + … + Φp+dXp+h-p-d +εn+h – θ1εn+h-1 – … – θqεn+h-q

 I) The parameters c, Φ1, …, Φp+d, θ1, …, θq are replaced by their 
estimates derived from the parameter estimation stage.

 II) For t ≤ n, Xt will be a known observation. For t > n Xt is 
replaced by its forecast made at t.

 III) For t ≤ n, the error term εt is replaced by its estimate, that is, 
the residual from the fitted model. For t > n, the unknown εt is 
replaced by its beast forecast, which is zero. 
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Example of an AR(1) Process

 Consider an AR(1) process: Xt = φXt-1 + εt

where |φ| < 1, t = 1, 2, …, n and εt is a white noise process.

 Forecast:

 h = 1 

 h = 2 

 In general: 

 With mean: 

 Note: 1) since |φ| < 1, the forecast will go to the mean of the 
series and 2) the forecast depends on Xn.
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Forecast error of AR(1)

 One step-ahead forecast error: 

εn(1) = Xn+1 – E[Xn+1|Xn, Xn-1, …, X1] = φXn + εn+1 - φXn = εn+1

 Thus, Var[εn(1)] = σ2 (replace by its estimate).

 Forecast error for longer leads:

εn(h) = Xn+h – E[Xn+h|Xn, Xn-1, …, X1] = εn+h + φεn+h-1 + φ2εn+h-2 + … + φh-1εn+1

 We can write:

 The Variance is: 

 For summing finite geometric series: 

 For long lead times: 

Prof. Christos Agiakloglou 25

1

0

)(
h

j

jhn

j

n h
1

0

22)]([
h

j

j

n hVar

2

2
2

1

1
)]([

h

n hVar

02

2

)(
1

)]([ tn XVarhVar

Example of a MA(1) Process

 Consider a MA(1) process: Xt = εt – θεt-1

where |θ| < 1, t = 1, 2, …, n and εt is a white noise process.

 Forecast:

 h = 1 

 h ≥ 2 

 With mean: 

 h = 1 

 h ≥ 2 

 Note: The forecast depends on recent values of residual. 
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Forecast error of MA(1)

 One step-ahead forecast error: 

εn(1) = Xn+1 – E[Xn+1|Xn, Xn-1, …, X1] =  εn+1 – θεn – (-θεn) = εn+1

 Thus, Var[εn(1)] = σ2 (replace by its estimate).

 Note: εn(1) ~ N(0, σ2).

 Then Construct Confidence Interval for Xn(1).
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General Comments for Prediction 

 Pure Moving Average Processes:
 Have actual forecasts up to q periods ahead only that is up yo the order of 

the moving average model.

 After the order of the moving average model the forecast is the mean of 
the series.

 The forecasts depend on the most recent values of the error term 
(residuals).

 Pure Autoregressive Processes:
 Have forecasts for large periods ahead.

 The forecasts depend on the most recent observations of the series. 

 For very large periods ahead the forecast is the mean of the series.

 Also for large periods ahead the variance of the forecast converges to the 
variance of the series.

 Mixed comments are valid for mixed models.
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Example of a R.W. Process

 Consider Random Walk with drift process: Xt = Xt-1 +μ + εt

 Forecast:

 h = 1 

 h = 2 

 In general: 

 If μ ≠ 0 the forecast does not converge for long leads h but 
follows a straight line with slope μ for all h periods.
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Forecast error of R.W.

 One step-ahead forecast error: 

εn(1) = Xn+1 – E[Xn+1|Xn, Xn-1, …, X1] = Xn + μ + εn+1 – (Xn + μ) = εn+1

 Thus, Var[εn(1)] = σ2 (replace by its estimate).

 Forecast error for longer leads:

εn(h) = Xn+h – E[Xn+h|Xn, Xn-1, …, X1] = (Xn + hμ + εn+1 + … + εn+h) – (Xn + 
hμ) 

 We can write:

 The Variance is: 

 In contrast to the stationary case, here the Var[εn(h)] grows without limit as 
the forecast lead time h increases. 

 This property is characteristic of the forecast error variance for all non-
stationary processes.
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