
Κεφάλαιο 1

Στοιχεία Στατιστικής

Ορισμός 1. Το σύνολο των δυνατών αποτελεσμάτων (στοιχειωδών ενδεχομέ-

νων) ενός πειράματος τύχης ονομάζεται δειγματικός χώρος και παριστάνεται με

το γράμμα Ω.

Ορισμός 2. ΄Ενας δειγματικός χώρος ονομάζεται διακριτός (discrete), αν α-
ποτελείται από πεπερασμένο ή αριθμήσιμο το πολύ πλήθος στοιχειωδών ενδεχο-

μένων (σημείων).

Ορισμός 3. ΄Ενας δειγματικός χώρος ονομάζεται συνεχής (continuous), αν
αποτελείται από συνεχές πλήθος ενδεχομένων (σημείων).

Ορισμός 4. Αν Ω είναι ένας δειγματικός χώρος με μέτρο πιθανότητας και

X είναι μία συνάρτηση με πραγματικές τιμές και πεδίο ορισμού το δειγματικό
χώρο Ω, τότε η X ονομάζεται τυχαία μεταβλητή.

1.1 Συναρτήσεις Πιθανότητας και

Αθροιστικής Πιθανότητας

Ορισμός 5. Αν X είναι διακριτή τυχαία μεταβλητή, η συνάρτηση f(x) =
P (X = x) για κάθε x εντός του πεδίου τιμών της X, ονομάζεται συνάρτηση
πιθανότητας της X.

Ορισμός 6. Αν X είναι συνεχής τυχαία μεταβλητή, η συνάρτηση f(x) > 0
για κάθε x εντός του πεδίου τιμών της X, ονομάζεται συνάρτηση πυκνότητας
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πιθανότητας της X, ή απλά πυκνότητα της X εάν και μόνο εάν

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx,

για οποιουσδήποτε σταθερούς πραγματικούς αριθμούς a και b με a ≤ b.

Θεώρημα 1.1.1. Αν X είναι διακριτή τυχαία μεταβλητή, τότε η f(x) πρέπει
να ικανοποιεί τις κάτωθι συνθήκες:

1) f(x) > 0 για κάθε τιμή εντός του πεδίου ορισμού της,
2)
∑
x f(x) = 1, όπου το άθροισμα είναι για όλες τις τιμές εντός του πεδίου

ορισμού της.

Θεώρημα 1.1.2. Αν X είναι συνεχής τυχαία μεταβλητή, τότε η f(x) πρέπει
να ικανοποιεί τις κάτωθι συνθήκες:

1) f(x) ≥ 0 για κάθε τιμή εντός του πεδίου ορισμού της,
2)
∫∞
−∞ f(x) = 1.

Ορισμός 7. Αν X είναι διακριτή τυχαία μεταβλητή, η αθροιστική συνάρτηση
(ή συνάρτηση κατανομής) ορίζεται ως

F (x) = P (X ≤ x) =
∑
y≤x

f(y), για −∞ < x <∞,

όπου f(y) είναι η τιμή της κατανομής πιθανότητας της X στο y.

Ορισμός 8. Αν X είναι συνεχής τυχαία μεταβλητή, η αθροιστική συνάρτηση
(ή συνάρτηση κατανομής) ορίζεται ως

F (x) = P (X ≤ x) =
∫ x

−∞
f(y)dy, για −∞ < x <∞.

1.2 Μέση τιμή και διασπορά

Η μέση τιμή (mean), ή αναμενόμενη τιμή (expected value) μιας τυχαίας μετα-

βλητής X συμβολίζεται με E(X) = µX . Αν X είναι διακριτή τυχαία μεταβλητή,

τότε ορίζεται ως

µX = E(X) =
∑
x

xP (X = x).
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Αν X είναι συνεχής τυχαία μεταβλητή, τότε ορίζεται ως

µX = E(X) =
∫ ∞
−∞

xf(x)dx.

Η διασπορά, ή διακύμανση (variance) μιας τυχαίας μεταβλητής X συμβολίζεται

με V ar(X) = σ2
και ορίζεται ως

V ar(X) = E[(X − E(X)]2 = E(X − µX)2.

Η τυπική απόκλιση (standard deviation) ισούται με την τετραγωνική ρίζα της

διασποράς.

1.3 Ροπές

Η ροπή (moment) μιας τυχαίας μεταβλητής X τάξης r(r = 1, 2, 3...) συμβολί-

ζεται με E(Xr). Αν η X είναι διακριτή τυχαία μεταβλητή, είναι

E(Xr) =
∑
x

xrP (X = x),

ενώ αν η X είναι συνεχής τυχαία μεταβλητή ορίζεται ως

E(Xr) =
∫ ∞
−∞

xrf(x)dx.

1.4 Ροπογεννήτρια

Η ροπογεννήτρια (moment generating function) μιας τυχαίας μεταβλητής X
συμβολίζεται με MX(t) και ορίζεται ως

MX(t) = E(etX).

Αν η X είναι διακριτή τυχαία μεταβλητή, ορίζεται ως

MX(t) =
∑
x

etxP (X = x),

ενώ αν η X είναι συνεχής τυχαία μεταβλητή, ορίζεται ως

MX(t) =
∫ ∞
−∞

etxf(x)dx.
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Ιδιότητες: α) Ισχύει πάντοτε ότι MX(0) = 1. Για παράδειγμα, αν η X είναι

συνεχής, έχουμε

MX(0) =
∫ ∞
−∞

e0xf(x)dx =
∫ ∞
−∞

f(x)dx = 1.

β) Μπορούμε να υπολογίσουμε τις ροπές του X, αν πάρουμε διαδοχικές παρα-

γώγους της MX(t), δηλαδή

d

dt
MX(t)

∣∣∣∣∣
t=0

= E(X), d2

dt2
MX(t)

∣∣∣∣∣
t=0

= E(X2), .... d
r

dtr
MX(t)

∣∣∣∣∣
t=0

= E(Xr).

1.4.1 Γεννήτρια Συνάρτηση Ημιαναλλοίωτων

Η γεννήτρια συνάρτηση ημιαναλλοίωτων (cummulant generating function)
μιας τυχαίας μεταβλητής X συμβολίζεται με KX(t) και ορίζεται ως

KX(t) = ln[MX(t)] = lnE(etX) = kX(1) t1! + kX(2)t
2

2! + +kX(3)t
3

3! + ...

= tE(X) + t2

2!V ar(X) + ....,

όπου η n-στη ημιαναλλοίωτη λαμβάνεται ως

kX(n) = dn

dtn
KX(n)

∣∣∣∣∣
t=0
.

Η μέση τιμή υπολογίζεται ως

kX(1) = d

dt
ln[MX(t)]

∣∣∣∣∣
t=0

=
d
dt
MX(t)
MX(t)

∣∣∣∣∣
t=0

= E(X)

και η διασπορά ως

kX(2) = d2

dt2
ln[MX(t)]

∣∣∣∣∣
t=0

= d

dt

d
dt
MX(t)
MX(t)

∣∣∣∣∣
t=0

=
d2

dt2
MX(t)− d

dt
MX(t) d

dt
MX(t)

[MX(t)]2

∣∣∣∣∣
t=0

= E(X2)− [(E(X)]2 = V ar(X).
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΄Ασκηση 1. Να αποδειχθεί ότι η 3-η κεντρική ροπή ισούται με

kX(3) = d3

dt3
ln[MX(t)]

∣∣∣∣∣
t=0

= E[(X − E(X)3].

Παράδειγμα 1. ΄Εστω η συνάρτηση πυκνότητας πιθανότητας της τυχαίας

μεταβλητής X είναι f(x) = 3e−3x, x > 0. Να βρεθεί η ροπογεννήτρια MX(t)
και με βάση τη ροπογεννήτρια να βρεθούν η πρώτη και δεύτερη ροπή, καθώς

και η διασπορά της X.

Λύση: Η ροπογεννήτρια δίνεται από τη σχέση

MX(t) =
∫ ∞

0
etx3e−3xdx

= 3
∫ ∞

0
e−(3−t)xdx

= 3
3− t , t < 3.

Η πρώτη ροπή υπολογίζεται ως

E(X) = d

dt
MX(t)

∣∣∣∣∣
t=0

= 3
(3− t)2

∣∣∣∣∣
t=0

= 1
3 ,

η δεύτερη ροπή ως

d2

dt2
MX(t)

∣∣∣∣∣
t=0

= 3(2)(3− t)
(3− t)4

∣∣∣∣∣
t=0

= 2
9 = E(X2)

και η διασπορά

Var(X) = E(X2)− [E(X)]2 = 2
9 −

1
32 = 1

9 .

Διαφορετικά,

MX(t) = 3
3− t ⇒ lnMX(t) = ln 3− ln(3− t),
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d

dt
ln[MX(t)] = 1

3− t
και

Var(X) = d2

dt2
ln[MX(t)]

∣∣∣∣∣
t=0

= 1
(3− t)2

∣∣∣∣∣
t=0

= 1
9 .

Παράδειγμα 2. Να βρεθεί η ροπογεννήτρια MX(t), η πρώτη και η δεύτερη

ροπή, καθώς και η διασπορά της τυχαίας μεταβλητής X, η οποία δηλώνει το

αποτέλεσμα ρίψης ενός ζαριού, με

P (X = x) = 1
6 , για x = 1, 2, 3, 4, 5, 6.

Λύση: Η ροπογεννήτρια δίνεται από τη σχέση

MX(t) =
∑
x

etxP (X = x)

=
6∑

x=1
etx

1
6 = et

6 + e2t

6 + ...+ e6t

6

= et

6

5∑
x=0

etx = et

6

(
1 + et + ...+ e5t

)

= 1
6e

t

(
1− e6t

1− et

)
,

λαμβάνοντας υπόψη ότι
∑n−1
x=0 a

x = 1−an
1−a .

Η πρώτη ροπή υπολογίζεται ως

E(X) = d

dt
MX(t)

∣∣∣∣∣
t=0

= 1e
t

6 + 2e
2t

6 + ...+ 6e
6t

6

∣∣∣∣∣
t=0

= 11
6 + 21

6 + ...+ 61
6 = 7

2 ,
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η δεύτερη ροπή ως

E(X2) = d2

dt2
MX(t)

∣∣∣∣∣
t=0

= 1e
t

6 + (2)(2)e
2t

6 + ...+ (6)(6)e
6t

6

∣∣∣∣∣
t=0

= 11
6 + 22 1

6 + ...+ 62 1
6 = 91

6

και η διασπορά ως

Var(X) = E(X2)− [E(X)]2

= 91
6 −

(
7
2

)2

= 35
12 .

1.5 Κεντρικές Ροπές

Ορισμός 1. Η k-οστή κεντρική ροπή (central moment) μιας τυχαίας με-
ταβλητής X ορίζεται ως η μέση τιμή της k-οστής δύναμης της απόκλισης
της τυχαίας μεταβλητής από τη μέση τιμή µ της μεταβλητής αυτής, δηλαδή
E(X − µ)k. Η δεύτερη ροπή συνήθως ονομάζεται διασπορά (διακύμανση) και
συμβολίζεται με το σ2

και η τετραγωνική ρίζα της διασποράς ονομάζεται τυπική

απόκλιση.

Ορισμός 2. Ο λόγος της τυπικής απόκλισης σ ως προς τη μέση τιμή µ
ονομάζεται συντελεστής μεταβλητότητας και συμβολίζεται με CV (coefficient
of variation),

Ορισμός 3. Ο λόγος της 3-ης κεντρικής ροπής ως προς την 3-η δύναμη της
απόκλισης ονομάζεται λοξότητα ή ασυμμετρία (skewness),

γ1 = E(X − µ)3

σ3 .

Αν η γ1 είναι αρνητική τότε η συνάρτηση πυκνότητας πιθανότητας της τυχαίας

μεταβλητής X έχει ασυμμετρία από τα αριστερά (οι περισσότερες παρατηρήσεις
βρίσκονται αριστερά της κορυφής της κατανομής), αν η f(x) είναι συμμετρική
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η γ1 ισούται με το μηδέν (όχι όμως αντίστροφα) και αν η γ1 είναι θετική

τότε η συνάρτηση πυκνότητας πιθανότητας της τυχαίας μεταβλητής X έχει
ασυμμετρία από τα δεξιά (οι περισσότερες παρατηρήσεις βρίσκονται δεξιά της

κορυφής της κατανομής).

Ορισμός 4. Ο λόγος της 4-ης κεντρικής ροπής ως προς την 4-η δύναμη της
απόκλισης ονομάζεται κύρτωση (kyrtosis),

γ2 = E(X − µ)4

σ4

και αφορά το βαθμό συγκέντρωσης των παρατηρήσεων γύρω από το μέσο και τα

άκρα της κατανομής. Η κατανομή, η οποία έχει σχετικά μεγάλη συγκέντρωση

τιμών γύρω από το μέσο, λέγεται λεπτόκυρτη, ενώ, αν έχει σχετικά μικρή

συγκέντρωση τιμών γύρω από το μέσο, λέγεται πλατύκυρτη.

Παράδειγμα 3. Να βρεθεί η συνάρτηση κατανομής F (x) της τυχαίας μετα-

βλητή X, της οποίας η συνάρτηση πιθανότητας f(x) ορίζεται ως

f(x) =



x
2 , 0 < x ≤ 1,

1
2 , 1 < x ≤ 2,

3−x
2 , 2 < x < 3,

0, αλλού.

(1.5.1)

Λύση: Με βάση τον ορισμό της συνάρτησης κατανομής έχουμε

F (x) =
∫ x

0

x

2dx = x2

4 , 0 < x ≤ 1,

F (x) =
∫ 1

0

x

2dx+
∫ x

1

1
2dx

= 1
4 + x− 1

2

= 2x− 1
4 , 1 < x ≤ 2
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και

F (x) =
∫ 1

0

x

2dx+
∫ 2

1

1
2dx+

∫ x

2

3− x
2 dx

= 1
4 + 1

2 + 1
4(6x− x2 − 8)

= 1
4(6x− x2 − 5), 2 < x < 3.

Συνεπώς, η συνάρτηση κατανομής είναι

F (x) =



0, x ≤ 0,

x2

4 , 0 < x ≤ 1,

1
4(2x− 1), 1 < x ≤ 2,

1
4(6x− x2 − 5), 2 < x < 3,

1, x ≥ 3.

(1.5.2)

Σχήμα 1.1: Γραφική παράσταση της συνάρτησης πιθανότητας και της αθροι-

στικής συνάρτησης του Παραδείγματος 3

Παράδειγμα 4. ΄Εστω X τυχαία μεταβλητή με συνάρτηση πυκνότητας πι-

θανότητας f(x) = xα−1e−x/β

Γ(α)βα , με μέση τιμή E(X) = αβ = 8 και διασπορά
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V ar(X) = αβ2
. Αν η ασυμμετρία (skewness), γ1 = 1, να βρεθούν οι τιμές των

παραμέτρων α και β.

Λύση: Γνωρίζουμε ότι E(X) = αβ = 8, V ar(X) = αβ2
και E(X2) =

V ar(X) + [E(X)]2 = αβ2(α + 1). Επίσης, έχουμε

E(X3) =
∫ ∞

0
x3f(x)dx =

∫ ∞
0

x3x
α−1e−x/β

Γ(α)βα dx

= Γ(α + 3)β3

Γ(α)

∫ 1

0

x(α+3)−1e−x/β

Γ(α + 3)βα+3 dx

= Γ(α + 3)β3

Γ(α)

= α(α + 1)(α + 2)Γ(α)β3

Γ(α)

= α(α + 1)(α + 2)β3
(1.5.3)

και η ασυμμετρία υπολογίζεται ως

γ1 = E[X − E(X)]3
E{[X − E(X)]2}3/2

= E(X3)− [E(X)]3 − 3E(X2)E(X) + 3[E(X)]2E(X)
{E(X2)− [E(X)]2}3/2

= α(α + 1)(α + 2)β3 − (αβ)3 − 3αβ2(α + 1)αβ + 3(αβ)2αβ

[αβ2(α + 1)− (αβ)2]3/2

= 2αβ3

(αβ2)3/2 = 2
α1/2 = 1



Κεφάλαιο 1. Στοιχεία Στατιστικής 11

⇒ α = 4. (1.5.4)

Δοθέντος ότι E(X) = αβ = 8 λαμβάνουμε β = 2.

΄Ασκηση 2. ΄Εστω η τυχαία μεταβλητή X, της οποίας η συνάρτηση πυκνό-
τητας πιθανότητας f(x) ορίζεται ως

f(x) =


2x, 0 < x < 1,

1, αλλού.

(1.5.5)

Να βρεθούν, α) η P (0.2 < X < 0.5) και β) η P (0.2 < X < 0.5|X > 0.25).

΄Ασκηση 3. ΄Εστω η τυχαία μεταβλητή X, της οποίας η συνάρτηση πυκνό-
τητας πιθανότητας f(x) ορίζεται ως

f(x) =


3x2, 0 < x < 1,

0, αλλού.

(1.5.6)

Να βρεθεί η συνάρτηση κατανομής F (x) και να δοθεί η γραφική της παράσταση.

΄Ασκηση 4. ΄Εστω η τυχαία μεταβλητή X, η οποία έχει σύνθετη κατανομή
στο διάστημα [0, 1), δηλαδή

f(x) =


1
2 , x = 0,

x, 0 < x < 1.
(1.5.7)

Να βρεθεί η συνάρτηση κατανομής F (x) και να δοθεί η γραφική της παράσταση.

΄Ασκηση 5. ΄Εστω η τυχαία μεταβλητή X κατανέμεται ως

f(x) =



2x, 0 < x < 1
2 ,

4−2x
3 , 1

2 ≤ x < 2,

0, αλλού.

(1.5.8)

Να βρεθεί η P (0.25 < X ≤ 1.25).



12 Κεφάλαιο 1. Στοιχεία Στατιστικής

΄Ασκηση 6. Το ποσό ζημιάς είναι μια τυχαία μεταβλητή X, της οποίας η
συνάρτηση κατανομής F (x) ορίζεται ως

F (x) =



0, x < 0,

x
2000 , 0 ≤ x < 1000,

3
4 , x = 1000,

x+11000
16000 , 1000 < x < 5000,

1, x ≥ 5000.

(1.5.9)

Να βρεθούν, α) η συνάρτηση πιθανότητας και β) η μέση τιμή και η διασπορά

της X.

΄Ασκηση 7. ΄Εστω ότι X1, X2, X3 είναι ανεξάρτητες και ισόνομες τυχαίες

μεταβλητές κάθε μία με συνάρτηση πυκνότητας πιθανότητας

f(x) =


3x2, 0 ≤ x < 1,

0, αλλού.

(1.5.10)

΄Εστω Y = max{X1, X2, X3}. Να βρείτε την P (Y > 1
2).

΄Ασκηση 8. Να βρεθεί η συμμετρία ή ασυμμετρία, καθώς και η κύρτωση από

τις κάτωθι κατανομές

(α) f(0) = 0.03, f(1) = 0.17, f(2) = 0.25, f(3) = 0.20, f(4) = 0.20
καιf(5) = 0.15,

(β) f(0) = 0.10, f(1) = 0.15, f(2) = 0.25, f(3) = 0.25, f(4) = 0.15
και f(5) = 0.10,

(γ) f(x) = 1−x
2 , −1 < x < 1.



Κεφάλαιο 2

Διακριτές Κατανομές

2.1 Διωνυμικό ανάπτυγμα

΄Εστω a, β ∈ R και n θετικός ακέραιος, τότε

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k,

όπου (
a

k

)
= a!
k!(a− k)! = a(a− 1)....(a− k − 1)

k! = (a)k
k! .

Για b = 1, λαμβάνουμε

(a+ 1)n =
n∑
i=0

(
n

i

)
ai.

Επίσης, ισχύει

(1 + t)a =
∞∑
k=0

(
a

k

)
tk, για |t| < 1.

Ειδικά για a = −r, r θετικός αριθμός ισχύει

(1 + t)−r =
∞∑
k=0

(
−r
k

)
tk
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και

(1− t)−r =
∞∑
k=0

(
−r
k

)
(−t)k.

΄Ομως, (
−r
k

)
= −r(−r − 1)....(−r − k − 1)

k!

= (−1)kr(r + 1)....(r + k − 1)
k!

= (−1)k
(
r + k

k − 1

)
.

΄Αρα,

(1− t)−r =
∞∑
k=0

(−1)k
(
r + k − 1

k

)
(−t)k

=
∞∑
k=0

(
r + k − 1

k

)
tk.

2.2 Διακριτή Ομοιόμορφη Κατανομή

Ορισμός 9. Μία τυχαία μεταβλητή X έχει διακριτή ομοιόμορφη (uniform)
κατανομή, αν η συνάρτηση πιθανότητας ορίζεται ως

f(x) = 1
k
, για x = 1, 2, ..., k. (2.2.1)

Θεώρημα 2.2.1. Αν η X ακολουθεί την ομοιόμορφη κατανομή, τότε η μέση
τιμή, η διασπορά και η ροπογεννήτρια είναι αντίστοιχα,

E(X) = (k + 1)
2 , V ar(X) = (k2 − 1)

12 και MX(t) =
∑
x

etx
1
k
. (2.2.2)

Απόδειξη: Η μέση τιμή υπολογίζεται ως

E(X) =
k∑
x=1

x
1
k

= 1
k

(1 + 2 + ...+ k)
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Σχήμα 2.1: Γραφική παράσταση της συνάρτησης πιθανότητας και της αθροι-

στικής συνάρτησης της ομοιόμορφης κατανομής με k = (20, 30, 40)

= 1
k

k(k + 1)
2

= (k + 1)
2 ,

η δεύτερη ροπή ως

E(X2) =
k∑
x=1

x2 1
k

= 1
k

(12 + 22 + ...+ k2)

= 1
k

k(k + 1)(2k + 1)
6

= (k + 1)(2k + 1)
6

και η διασπορά ως

Var(X) = E(X2)− [E(X)]2

= (k + 1)(2k + 1)
6 − (k + 1)2

4
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= (k + 1)[2(2k + 1)− 3(k + 1)]
12

= (k + 1)(k − 1)
12

= (k2 − 1)
12 .

Τέλος, η ροπογεννήτρια υπολογίζεται ως

MX(t) =
∑
x

etx
1
k
.

2.3 Κατανομή Bernoulli
Ορισμός 10. Μία τυχαία μεταβλητή X έχει κατανομή Bernoulli, αν η συ-
νάρτηση πιθανότητας της X ορίζεται ως

f(x) = px(1− p)1−x
για x = 0, 1, 0 < p < 1. (2.3.3)

Σχήμα 2.2: Γραφική παράσταση της συνάρτησης πιθανότητας και της αθροι-

στικής συνάρτησης της κατανομής Bernoulli με παράμετρο p = (0.2, 0.5, 0.8).

Θεώρημα 2.3.1. Αν η X ακολουθεί την κατανομή Bernoulli, τότε η μέση
τιμή και η διασπορά είναι E(X) = p και V ar(X) = p(1− p) αντίστοιχα, ενώ η
ροπογεννήτρια είναι MX(t) = etp+ (1− p).
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Απόδειξη: Η μέση τιμή είναι

E(X) = (1)p+ (0)(1− p) = p.

Η δεύτερη ροπή είναι

E(X2) = 12p+ 02(1− p) = p

και η διασπορά

Var(X) = E(X2)− [E(X)]2

= p− p2

= p(1− p).

Η ροπογεννήτρια είναι

MX(t) = E(etx) = et(1)p+ et(0)(1− p)

= etp+ (1− p).

2.4 Διωνυμική Κατανομή

Ορισμός 11. Μία τυχαία μεταβλητήX έχει διωνυμική (binomial) κατανομή,
αν η συνάρτηση πιθανότητας της X ορίζεται ως

f(x) =
(
n

x

)
px(1− p)n−x, x = 0, 1, ..., n, 0 ≤ p ≤ 1. (2.4.4)

Θεώρημα 2.4.1. Αν η X ακολουθεί την διωνυμική κατανομή, η ροπογεννή-
τρια ισούται με

MX(t) = [pet + (1− p)]n (2.4.5)

και η μέση τιμή και διασπορά αντίστοιχα με

E(X) = np και V ar(X) = np(1− p). (2.4.6)
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Σχήμα 2.3: Γραφική παράσταση της συνάρτησης πιθανότητας και της αθροιστι-

κής συνάρτησης της διωνυμικής κατανομής για n = 50 και p = (0.2, 0.5, 0.8).

Απόδειξη: Η ροπογεννήτρια υπολογίζεται ως

MX(t) = E(etx) =
n∑
x=0

(
n

x

)
etxpx(1− p)n−x

=
n∑
x=0

(
n

x

)
(pet)x(1− p)n−x

(
(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i

)

= [pet + (1− p)]n.

Η πρώτη ροπή δίνεται από τη σχέση

E(X) = d

dt
MX(t)

∣∣∣∣∣
t=0

= npet[pet + (1− p)]n−1
∣∣∣∣∣
t=0

= np.

Η δεύτερη ροπή υπολογίζεται ως

E(X2) = d2

dt2
MX(t)

∣∣∣∣∣
t=0

= npet[pet + (1− p)]n−1 + n(n− 1)pet[pet

+(1− p)]n−2pet
∣∣∣∣∣
t=0

= np+ n(n− 1)p2
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και η διασπορά ως

Var(X) = E(X2)− [E(X)]2

= np+ n(n− 1)p2 − (np)2

= np(1− p).

2.5 Κατανομή Poisson

Ορισμός 12. Μία τυχαία μεταβλητή X έχει κατανομή Poisson, αν η συνάρ-
τηση πιθανότητας της X ορίζεται ως

f(x) = e−λλx

x! , x = 0, 1, ..., και λ > 0. (2.5.7)

Σχήμα 2.4: Γραφική παράσταση της συνάρτησης πιθανότητας και συνάρτησης

κατανομής της κατανομής Poisson με παράμετρο λ = (10, 20, 40).

Θεώρημα 2.5.1. Αν η X ακολουθεί την κατανομή Poisson, ισχύει ότι

MX(t) = eλ(et−1), E(X) = λ και V ar(X) = λ. (2.5.8)



20 Κεφάλαιο 2. Διακριτές Κατανομές

Απόδειξη: Η ροπογεννήτρια υπολογίζεται ως

MX(t) = E(etx) =
∞∑
x=0

etx
e−λλx

x!

= e−λ
∞∑
x=0

(λet)x
x! (γνωρίζουμε ότι

∞∑
x=0

(a)x
x! = ea)

= e−λeλe
t

= eλ(et−1).

Η πρώτη ροπή είναι

E(X) = d

dt
MX(t)

∣∣∣∣∣
t=0

= e−λeλe
t

λet
∣∣∣∣∣
t=0

= λ,

η δεύτερη ροπή

E(X2) = d2

dt2
MX(t)

∣∣∣∣∣
t=0

= e−λeλe
t

λet + e−λeλe
t

λetλet
∣∣∣∣∣
t=0

= λ(λ− 1)

και η διασπορά

Var(X) = E(X2)− [E(X)]2

= λ(λ+ 1)− λ2

= λ.
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2.6 Γεωμετρική Κατανομή

Ορισμός 13. Μία τυχαία μεταβλητή X έχει γεωμετρική (geometric) κατα-
νομή, αν η συνάρτηση πιθανότητας της X ορίζεται ως

f(x) = P (X = x) = p(1− p)x−1, x = 1, 2, 3, ...

Θεώρημα 2.6.1. Αν X ακολουθεί την γεωμετρική κατανομή, η μέση τιμή,
η διασπορά και η ροπογεννήτρια είναι αντίστοιχα,

E(X) = 1
p
, V ar(X) = 1− p

p2 και MX(t) = p

1− qet . (2.6.9)

Απόδειξη: Να αποδειχθεί ως άσκηση.

Σχήμα 2.5: Γραφική παράσταση της συνάρτησης πιθανότητας και της αθροι-

στικής συνάρτησης της γεωμετρικής κατανομής με παραμέτρους n = 20 και

p = (0.2, 0.5, 0.8).

2.7 Αρνητική Διωνυμική Κατανομή

Ορισμός 14. Μία τυχαία μεταβλητή X έχει αρνητική διωνυμική (negative
binomial) κατανομή, αν η συνάρτηση πιθανότητας της X ορίζεται ως

f(x) = P (X = x) =
(
x− 1
r − 1

)
pr(1− p)x−r, x = r, r + 1, r + 2, ...(2.7.10)

ή διαφορετικά, ως

f(x) = P (X = x) =
(
r + x− 1

x

)
pr(1− p)x για x = 0, 1, 2, ... (2.7.11)
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Σχήμα 2.6: Γραφική παράσταση της συνάρτησης πιθανότητας και της αθροιστι-

κής συνάρτησης της αρνητικής διωνυμικής κατανομής με παραμέτρους n = 50
και p = (0.2, 0.5, 0.8).

Παρατήρηση 1. Αν στη συνάρτηση πιθανότητας της αρνητικής διωνυμικής

κατανομής όπως ορίζεται στην (2.7.10), θέσουμε r = 1, λαμβάνουμε τη γεω-

μετρική κατανομή.

Θεώρημα 2.7.1. ΄Εστω ότι ηX ακολουθεί την αρνητική διωνυμική κατανομή
της μορφής (2.7.10), η μέση της τιμή είναι

E(X) = r

p
. (2.7.12)

Απόδειξη: Με βάση τη σχέση (2.7.10) και κάνοντας χρήση του διωνυμι-

κού θεωρήματος (a+ b)n = ∑n
i=0

(
n
i

)
aibn−i, η μέση τιμή υπολογίζεται ως

E(X) =
∞∑
x=r

x

(
x− 1
r − 1

)
prqx−r

=
∞∑
x=r

x
(x− 1)!

(x− r)!(r − 1)!p
rqx−r

=
∞∑
x=r

r

r

x!
(x− r)!(r − 1)!p

rqx−r

=
∞∑
x=r

(
x

r

)
rprqx−r
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= rpr
∞∑
x=r

(
x

r

)
qx−r

=x−r=y rpr
∞∑
y=0

(
r + y

r

)
qy

= rpr
∞∑
y=0

(
(r + 1) + y − 1

(r + 1)− 1

)
qy

= rpr(1− q)−(r+1)

= r

p
. (2.7.13)

Θεώρημα 2.7.2. Με βάση την αρνητική διωνυμική κατανομή, όπως ορίζεται

στην (2.7.11), η ροπογεννήτρια ισούται με

(
p

1−qet

)r
, η μέση τιμή E(X) = rq

p

και η διασπορά V ar(X) = rq
p2 .

Απόδειξη: Η ροπογεννήτρια της αρνητικής διωνυμική κατανομής είναι

MX(t) =
∞∑
x=0

etx
(
r + x− 1

x

)
pr(1− p)x

=
∞∑
x=0

etx
(
−r
x

)
pr(−q)x

= pr
∞∑
x=0

(
−r
x

)
(−qet)x

= pr
1

(1− qet)r
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=
(

p

1− qet

)r
.

Η πρώτη ροπή υπολογίζεται ως

E(X) = d

dt
MX(t)

∣∣∣∣∣
t=0

=
(

p

1− qet

)r∣∣∣∣∣
t=0

= pr(−r)(1− qet)−(r+1)(−qet)
∣∣∣∣∣
t=0

= rq

p
,

η δεύτερη ροπή ως

E(X2) = d2

dt2
MX(t)

∣∣∣∣∣
t=0

= prrq[q(r + 1)e2t(1− qet)−(r+2) + et(1− qet)−(r+1)]
∣∣∣∣∣
t=0

= prrq[q(r + 1)p−(r+2)p−(r+2)]

= (r + 1)r q
2

p2 + rq

p

και η διασπορά

V ar(X) = E(X2)− [E(X)]2 = (r + 1)r q
2

p2 + rq

p
−
(
rq

p

)2

= rq2

p2 + rq

p

= rq

p2 .
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΄Ασκηση 9. Με βάση την αρνητική διωνυμική κατανομή, όπως ορίζεται στη

(2.7.10), να βρεθεί η ροπογεννήτρια και με βάση τη ροπογεννήτρια να βρεθεί η

διασπορά (V ar(X) = rq
p2 ).

2.8 Υπεργεωμετρική Κατανομή

Ορισμός 15. Μία τυχαία μεταβλητή X έχει υπεργεωμετρική (hypergeome-
tric) κατανομή, αν η συνάρτηση πιθανότητας της X ορίζεται ως

f(x) = P (X = x) =

(
k
x

)(
N−k
n−x

)
(
N
n

) , για x = 0, 1, 2, ..., n, 0 ≤ k ≤ N, 1 ≤ n ≤ N.

Σχήμα 2.7: Γραφική παράσταση της συνάρτησης πιθανότητας και της αθροι-

στικής συνάρτησης της υπεργεωμετρικής κατανομής για n = (20, 40, 100) και

k = 0, 100.

Θεώρημα 2.8.1. Αν X ακολουθεί την υπεργεωμετρική κατανομή, η μέση
τιμή είναι

E(X) = n
k

N
. (2.8.14)

Απόδειξη: Η μέση τιμή υπολογίζεται ως

E(X) =
n∑
x=0

x

(
k
x

)(
N−k
n−x

)
(
N
n

)
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= n
k

N

n∑
x=0

(
k−1
x−1

)(
N−k
n−x

)
(
N−1
n−1

)

= n
k

N

n−1∑
y=0

(
k−1
y

)(
N−1−k−1
n−1−y

)
(
N−1
n−1

)

= n
k

N
.

΄Εχουμε κάνει χρήση της σχέσης

n∑
j=0

(
a

j

)(
b

n− j

)
=
(
a+ b

n

)
.

΄Ασκηση 10. Να δείξετε ότι η διασπορά της υπεργεωμετρικής κατανομής είναι

V ar(X) = n
k

N

N − k
N

N − n
N − 1 ,

αφού προηγουμένως βρείτε τη E[X(X − 1)].



Κεφάλαιο 3

Συνεχείς Κατανομές

3.1 Ομοιόμορφη Κατανομή

Ορισμός 16. Μια τυχαία μεταβλητή X ακολουθεί την ομοιόμορφη (uniform)
κατανομή με παραμέτρους a και b αν η συνάρτηση πυκνότητας πιθανότητας
ορίζεται ως

f(x) = 1
b− a

, a < x < b (3.1.1)

και η αθροιστική συνάρτηση ισούται με

F (x) =
∫ x

a

1
b− a

dx = x

b− a

∣∣∣∣∣
x

a

= x− a
b− a

.

Σχήμα 3.1: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της ομοιόμορφης κατανομής με a = 1 και b =
(3, 7, 10).
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Θεώρημα 3.1.1. Αν η X ακολουθεί την ομοιόμορφη κατανομή, τότε η μέση

τιμή είναι E(X) = a+b
2 , η διασπορά, Var(X) = (b−a)2

12 και η ροπογεννήτρια,

MX(t) = ebt−eat
(b−a)t .

Απόδειξη: Η μέση τιμή υπολογίζεται ως

E(X) =
∫ b

a
x

1
b− a

dx = x2

2(b− a)

∣∣∣∣∣
b

a

dx

= b2 − a2

2(b− a) = a+ b

2 ,

η δεύτερη ροπή ως

E(X2) =
∫ b

a
x2 1
b− a

dx = x3

3(b− a)

∣∣∣∣∣
b

a

dx

= b3 − a3

3(b− a) ,

η διασπορά ως

V ar(X) = b3 − a3

3(b− a) −
(
a+ b

2

)2

= (b− a)2

12

και η ροπογεννήτρια ως

E(etX) =
∫ b

a
etx

1
b− a

dx

= ebt − eat

(b− a)t .



Κεφάλαιο 3. Συνεχείς Κατανομές 29

3.2 Κανονική Κατανομή

Ορισμός 17. Μια τυχαία μεταβλητή X ακολουθεί την κανονική (normal)
κατανομή με παραμέτρους µ και σ2

, αν η συνάρτηση πυκνότητας πιθανότητας

ορίζεται ως

f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x <∞, µ ∈ <, σ2 > 0. (3.2.2)

Αν στη σχέση (3.2.2) θέσουμε µ = 0 και σ2 = 1, λαμβάνουμε την τυπική
κανονική (standard normal) κατανομή με συνάρτηση πυκνότητας πιθανότητας,
η οποία συμβολίζεται με φ(x) και ισούται με

f(x) = φ(x) = 1√
2π
e−

x2
2 , −∞ < x <∞. (3.2.3)

Η αθροιστική συνάρτηση της τυπικής κανονικής κατανομής συμβολίζεται με

Φ(x) και ισούται με

F (x) = Φ(x) =
∫ x

−∞

1√
2π
e−

x2
2 . (3.2.4)

Σχήμα 3.2: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της κανονικής κατανομής με παραμέτρους µ = 0
και σ2 = (0.5, 1.0, 2.0).

Θεώρημα 3.2.1. Αν η X ακολουθεί την κανονική κατανομή, τότε η μέση
τιμή είναι E(X) = µ, η διασπορά Var(X) = σ2

και η ροπογεννήτρια MX(t) =
eµt+

σ2t2
2 .
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Λύση: Θα βρούμε πρώτα τη ροπογεννήτρια

MX(t) = E(etX) =
∫ ∞
−∞

etx
1√
2πσ

e−
(x−µ)2

2σ2 dx

=
∫ ∞
−∞

etµet(x−µ) 1√
2πσ

e−
(x−µ)2

2σ2 dx

= etµ
1√
2πσ

∫ ∞
−∞

e(−1/2σ2)[(x−µ)2−2σ2t(x−µ)]dx.

Αν συμπληρώσουμε το τετράγωνο μέσα στην παρένθεση, έχουμε

(x− µ)2 − 2σ2t(x− µ) = (x− µ)2 − 2σ2t(x− µ) + σ4t2 − σ4t2

= (x− µ− σ2t)2 − σ4t2

και

MX(t) = etµeσ
2t2/2

∫ ∞
−∞

1√
2πσ

e−(x−µ−σ2t)2/2σ2

= etµ+σ2t2/2
∫ ∞
−∞

1√
2πσ

e−[x−(µ+σ2t)]2/2σ2

= etµ+σ2t2/2. (3.2.5)

Το ολοκλήρωμα είναι ίσο με τη μονάδα (1), επειδή η σχέση μέσα στο ολο-

κλήρωμα είναι ή συνάρτηση πυκνότητας πιθανότητας μιας κανονικής τυχαίας

μεταβλητής με μέση τιμή µ+ σ2t και διασπορά σ2
. Η μέση τιμή ισούται με

d

dt
MX(t)

∣∣∣∣∣
t=0

= d

dt

(
etµ+σ2t2/2

)∣∣∣∣∣
t=0

= etµ+σ2t2/2 d

dt
(tµ+ σ2t2/2)

∣∣∣∣∣
t=0
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= etµ+σ2t2/2(µ+ σ2t)
∣∣∣∣∣
t=0

= µ.

Η δεύτερη ροπή είναι

d2

dt2
MX(t)

∣∣∣∣∣
t=0

= etµ+σ2t2/2(µ+ σ2t)2 + etµ+σ2t2/2(σ2)
∣∣∣∣∣
t=0

= µ2 + σ2

και η διασπορά

V ar(X) = E(X2)− [E(X)]2

= µ2 + σ2 − µ2

= σ2.

3.3 Λογαριθμοκανονική Κατανομή

Ορισμός 18. Αν η X είναι κανονική, τότε η Y = eX > 0 ορίζει την λογαριθ-
μοκανονική (lognormal) τυχαία μεταβλητή Y . Αν στη σχέση (3.2.2) θέσουμε
όπου x = ln y και dx = 1

y
dy, έχουμε τη συνάρτηση πυκνότητας πιθανότητας

της λογαριθμοκανονικής κατανομής

f(y) = 1√
2πσ

e−
(ln y−µ)2

2σ2
1
y
, 0 < y <∞. (3.3.6)

Η αθροιστική συνάρτηση ισούται με

FX(y) = Φ
(

ln x− µ
σ

)
0 < y <∞, σ > 0, −∞ < µ <∞, (3.3.7)

με την Φ όπως έχει οριστεί στη σχέση (3.2.4).



32 Κεφάλαιο 3. Συνεχείς Κατανομές

Σχήμα 3.3: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της λογαριθμοκανονικής κατανομής με παραμέ-

τρους µ = (1, 3, 4) και σ = 2.

Διαφορετικά, η συνάρτηση πυκνότητας πιθανότητας της λογαριθμοκανονι-

κής κατανομής υπολογίζεται ως

fY (y) = ∂

∂y
FY (y) = ∂

∂y
P (eX ≤ y) = ∂

∂y
P (X ≤ lny)

= ∂

∂y
FX(lny) = 1

y
fX(lny)

= 1√
2πσ

e−
(ln y−µ)2

2σ2
1
y
, 0 < y <∞.

Θεώρημα 3.3.1. Αν η Y ακολουθεί τη λογαριθμοκανονική κατανομή, τότε
η μέση τιμή, η διασπορά και η ροπή k-τάξης είναι αντίστοιχα,

E(Y ) = eµx+σ2
x
2 , E(Y 2) = e2µx+2σ2

x , V (Y ) = [E(Y )]2(eσ2
x − 1)

και E(Y k) = ekµx+ k2σ2
x

2 .

Απόδειξη: Η μέση τιμή της λογαριθμοκανονικής κατανομής ισούται με

την ροπογεννήτρια της κανονικής κατανομής, αν θέσουμε t = 1,

E(Y ) = E(eX) = MX(1) = eµx+σ2
x
2 ,
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η δεύτερη ροπή αν θέσουμε t = 2,

E(Y 2) = E(e2X) = MX(2) = e2µx+2σ2
x ,

η διασπορά

V ar(Y ) = e2µx+2σ2
x −

(
eµx+σ2

x
2

)2

= e2µx+2σ2
x − e2µx+σ2

x

= e2µx+σ2
x

(
eσ

2
x − 1

)

= [E(Y )]2
(
eσ

2
x − 1

)

και η ροπή k-τάξης, αν θέσουμε στην ροπογεννήτρια της κανονικής κατανομής,

t = k,

E(Y k) = E(ekX) = MX(k) = ekµx+ k2σ2
x

2 .

Παρατήρηση 2. Η λογαριθμοκανονική κατανομή έχει βαριά δεξιά ουρά και

δεν έχει ροπογεννήτρια. Γενικά, όλες οι τυχαίες μεταβλητές, που ακολουθούν

κατανομές με μακριές (βαριές) ουρές, δεν έχουν ροπογεννήτριες.

3.4 Εκθετική Κατανομή

Ορισμός 19. Η συνάρτηση πυκνότητας πιθανότητας της εκθετικής (expone-
ntial) κατανομής ορίζεται ως

f(x) = θe−θx, x > 0, (3.4.8)

ή εναλλακτικά

f(x) = 1
θ
e−

x
θ , x > 0. (3.4.9)
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Η συνάρτηση κατανομής είναι

F (x) =
∫ x

−∞
f(x)dx =

∫ x

0
θe−θxdx

= −θ1
θ
e−θx

∣∣∣∣∣
x

0

= 1− e−θx, (3.4.10)

ή εναλλακτικά

F (x) = 1− e−xθ . (3.4.11)

Σχήμα 3.4: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της εκθετικής κατανομής με παράμετρο θ =
(0.6, 2.0, 4.0).

Θεώρημα 3.4.1. ΄Εστω ότι η X ακολουθεί την εκθετική κατανομή, όπως
ορίζεται στη σχέση (3.4.8). Ισχύει ότι

E(X) = 1
θ
, V ar(X) = 1

θ2 και MX(t) = θ

(θ − t) .

Απόδειξη: ΄Εστω u = x ⇒ du = dx και dv = e−θxdx ⇒ v = −e−θx. Η
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πρώτη ροπή υπολογίζεται ως

E(X) =
∫ ∞
−∞

xf(x)dx =
∫ ∞

0
xθe−θxdx

= −xe−θx
∣∣∣∣∣
∞

0
+
∫ ∞

0
e−θxdx

(∫
udv = uv −

∫
vdu

)

= 0− 1
θ
e−θx

∣∣∣∣∣
∞

0
= 1
θ
.

Η δεύτερη ροπή υπολογίζεται ως

E[X2] =
∫ ∞
−∞

x2f(x)dx =
∫ ∞

0
x2θe−θxdx.

΄Εστω u = x2 ⇒ du = 2xdx και dv = θe−θxdx ⇒ v = −e−θx. Ολοκληρώνο-

ντας κατά μέρη (
∫
udv = uv −

∫
vdu), λαμβάνουμε

∫ ∞
0

x2θe−θxdx = −x2e−θx
∣∣∣∣∣
∞

0
+ 2

∫ ∞
0

xe−θxdx

= 0 + 2
∫ ∞

0
xe−θxdx.

΄Εστω u = x ⇒ du = dx και dv = e−θxdx ⇒ v = −1
θ
e−θx. Ολοκληρώνοντας

κατά μέρη, λαμβάνουμε

2
∫ ∞

0
xe−θxdx = 21

θ
xe−θx

∣∣∣∣∣
∞

0
− 2

∫ ∞
0

1
θ
e−θxdx

= 0− 2 1
θ2 e

−θx
∣∣∣∣∣
∞

0
= 2
θ2 .
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Οπότε η διασπορά γίνεται

V ar(X) = E(X2)− [E(X)]2

= 2
θ2 −

(
1
θ

)2

= 1
θ2

και η ροπογεννήτρια

MX(t) = E(etX) =
∫ ∞
−∞

etxf(x)dx

=
∫ ∞

0
etxθe−θxdx

=
∫ ∞

0
θe−x(θ−t)dx

= − θ

(θ − t)e
−x(θ−t)

∣∣∣∣∣
∞

0

= θ

(θ − t) .

3.5 Γάμμα Κατανομή

Ορισμός 20. Η συνάρτηση πυκνότητας πιθανότητας της Γάμμα (Gamma)
κατανομής με παραμέτρους α και β ορίζεται ως

f(x) = βαxα−1e−xβ

Γ(α) , x > 0, όπου α, β > 0, (3.5.12)

ή εναλλακτικά

f(x) = xα−1e−x/β

βαΓ(α) , x > 0, όπου α, β > 0, (3.5.13)
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όπου Γ(α) είναι η γνωστή συνάρτηση Γάμμα, η οποία ορίζεται ως

Γ(α) =
∫ ∞

0
xα−1e−xdx, x > 0, α > 0 (3.5.14)

και ικανοποιεί τη σχέση Γ(α) = (α−1)Γ(α−1). Αν ο α είναι θετικός ακέραιος
αριθμός Γ(α) = (α− 1)!. Επίσης, Γ(1

2) =
√
π.

Σχήμα 3.5: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της Γάμμα κατανομής με παραμέτρους a = (2, 7, 9)
και β = 3.

Η αθροιστική συνάρτηση με βάση τη συνάρτηση πυκνότητας πιθανότητας όπως

ορίζεται στη σχέση (3.5.12) υπολογίζεται ως

F (x) =
∫ x

0

βαxα−1e−xβ

Γ(α) dx

=
∫ xβ

0

βα( y
β
)α−1e−y 1

β

Γ(α) dy

(
xβ = y ⇒ βdx = dy

)

= Γ(xβ, α)
Γ(α) , (3.5.15)

ή εναλλακτικά με βάση τη (3.5.13)

F (x) = Γ(x/β, α)
Γ(α) , (3.5.16)
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όπου Γ(x, α) είναι η μη-πλήρης συνάρτηση Γάμμα (incomplete Gamma fu-
nction), η οποία ορίζεται ως

Γ(x, α) =
∫ x

0
xα−1e−xdx, x > 0, α > 0. (3.5.17)

Αν στις παραπάνω σχέσεις θέσουμε α = 1 και β = θ, παίρνουμε την

εκθετική συνάρτηση πυκνότητας πιθανότητας.

Θεώρημα 3.5.1. ΄Εστω ότι η X ακολουθεί την Γάμμα κατανομή ορισμένη
ως (3.5.13). Να δειχθεί ότι

E(X) = αβ, V ar(X) = αβ2
και MX(t) = 1

(1− βt)a . (3.5.18)

Απόδειξη: Η μέση τιμή είναι

E(X) =
∫ ∞

0
x
xα−1e−x/β

βαΓ(α) dx

= Γ(α + 1)β
Γ(α)

∫ ∞
0

x(α+1)−1e−x/β

βα+1Γ(α + 1)dx

= Γ(α + 1)β
Γ(α) = αΓ(α)β

Γ(α)

= αβ,

η ροπή δεύτερης τάξης

E(X2) =
∫ ∞

0
x2x

α−1e−x/β

βαΓ(α) dx

= Γ(α + 2)β2

Γ(α)

∫ ∞
0

x(α+2)−1e−x/β

βα+2Γ(α + 2)dx
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= Γ(α + 2)β2

Γ(α) = (α + 1)Γ(α + 1)β2

Γ(α)

= α(α + 1)Γ(α)β2

Γ(α)

= α(α + 1)β2,

η διασπορά

V ar(X) = α(α + 1)β2 − (αβ)2 = αβ2

και η ροπογεννήτρια

MX(t) =
∫ ∞

0
etx
xα−1e−x/β

βαΓ(α) dx

=
∫ ∞

0

xα−1e−x( 1
β
−t)

βαΓ(α) dx

=
∫ ∞

0

xα−1e−x/(
β

1−tβ )

βαΓ(α) dx

=
( β

1−tβ )α

βα

∫ ∞
0

xα−1e−x/(
β

1−tβ )

( β
1−tβ )αΓ(α)

dx

= 1
(1− βt)α .

Παρατήρηση 3. Αν η συνάρτηση πυκνότητας πιθανότητας της κατανομής

Γάμμα ορίζεται όπως στη σχέση (3.5.12), έχουμε

E(X) = α

β
, V ar(X) = α

β2 και MX(t) =
(

β

β − t

)α
. (3.5.19)
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3.6 Κατανομή χ2

Ορισμός 21. Η συνάρτηση πυκνότητας πιθανότητας της κατανομής χ2
με ν

βαθμούς ελευθερίας ορίζεται ως

f(x) = x
ν−2

2 e−
x
2

2 ν
2 Γ(ν2 )

, x > 0. (3.6.20)

Σχήμα 3.6: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της χ2
κατανομής με βαθμούς ελευθερίας ν =

(1/2, 4, 7).

Παρατήρηση 4. Η συνάρτηση πυκνότητας πιθανότητας της κατανομής χ2

με ν βαθμούς ελευθερίας είναι η συνάρτηση πυκνότητας πιθανότητας της κατα-

νομής Γάμμα με παραμέτρους α = ν
2 και β = 2.

3.7 Κατανομή Βήτα

Ορισμός 22. Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Βήτα

(Beta) με παραμέτρους α και β ορίζεται ως

f(x) = 1
B(α, β)x

α−1(1− x)β−1, 0 < x < 1, α > 0, β > 0. (3.7.21)

Θεώρημα 3.7.1. ΄Εστω ότι ηX ακολουθεί την κατανομή Βήτα, όπως ορίζεται
στην (3.7.21), τότε η μέση τιμή και η διασπορά είναι αντίστοιχα

E(X) = α

α + β
και V ar(X) = αβ

(α + β)2(α + β + 1) . (3.7.22)
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Σχήμα 3.7: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας

και της αθροιστικής συνάρτησης της κατανομής Βήτα με παραμέτρους α =
(0.5, 3.0, 5.0) και β = 2.

Απόδειξη: Η μέση τιμή υπολογίζεται ως

E(X) =
∫ 1

0
x

1
B(α, β)x

α−1(1− x)β−1dx

= B(α + 1, β)
B(α + 1, β)

∫ 1

0

1
B(α, β)x

(α+1)−1(1− x)β−1dx

= B(α + 1, β)
B(α, β)

∫ 1

0

1
B(α + 1, β)x

(α+1)−1(1− β)β−1dx

= B(α + 1, β)
B(α, β) =

Γ(α+1)Γ(β)
Γ(α+β+1)
Γ(α)Γ(β)
Γ(α+β)

=
αΓ(α)

(α+β)Γ(α+β)
Γ(α)

Γ(α+β)

= α

α + β
. (3.7.23)

Για τον υπολογισμό της σχέσης (3.7.23) έχουμε χρησιμοποιήσει την ιδιότητα,

ότι το ολοκλήρωμα της συνάρτησης πυκνότητας πιθανότητας της κατανομής
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Βήτα με παραμέτρους α + 1 και β, στο διάστημα (0, 1) ισούται με τη μονάδα.

Με τον ίδιο τρόπο λαμβάνουμε την E(X2)

E(X2) =
∫ 1

0
x2f(x)dx

=
∫ 1

0
x2 1
B(α, β)x

α−1(1− x)β−1dx

= B(α + 2, β)
B(α + 2, β)

∫ 1

0

1
B(α, β)x

(α+2)−1(1− x)β−1dx

= B(α + 2, β)
B(α, β)

∫ 1

0

1
B(α + 2, β)x

(α+2)−1(1− x)β−1dx

= B(α + 2, β)
B(α, β) =

Γ(α+2)Γ(β)
Γ(α+β+2)
Γ(α)Γ(β)
Γ(α+β)

=
α(α+1)Γ(α)

(α+β)(α+β+1)Γ(α+β)
Γ(α)

Γ(α+β)

= α(α + 1)
(α + β)(α + β + 1)

και τη διασπορά ως

V (X) = E(X2)−
(
E(X)

)2

= α(α + 1)
(α + β)(α + β + 1) −

(
α

α + β

)2

= αβ

(α + β)2(α + β + 1) .
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3.8 Κατανομή Weibull
Ορισμός 23. ΄Εστω ότι η τυχαία μεταβλητή Y ακολουθεί την εκθετική κα-
τανομή με παράμετρο θ > 0 και συνάρτηση κατανομής

P (Y ≤ y) = FY (y) = 1− e−θy, x > 0, (3.8.24)

τότε η τυχαία μεταβλητή X = Y
1
γ ακολουθεί την κατανομή Weibull με συνάρ-

τηση κατανομής

P (X ≤ x) = FX(x) = 1− e−θxγ , x > 0, γ > 0. (3.8.25)

Ορισμός 24. Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Weibull
είναι η παράγωγος της FX(x), όπως ορίζεται στην (3.8.25), δηλαδή

f(x) = θγxγ−1e−θx
γ

, x > 0. (3.8.26)

Σχήμα 3.8: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της κατανομής Weibull με παραμέτρους θ =
(1, 2, 3) και γ = 2.

Θεώρημα 3.8.1. Αν η X ακολουθεί την Weibull κατανομή, τότε η μέση
τιμή είναι

E(X) =
Γ( 1

γ
+ 1)

θ
1
γ

(3.8.27)

και η ροπή k-τάξης

E(Xk) =
Γ(k

γ
+ 1)

θ
k
γ

. (3.8.28)
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Απόδειξη: Η μέση τιμή υπολογίζεται ως

E(X) =
∫ ∞

0
xθγxγ−1e−θx

γdx

=
∫ ∞

0
θγxγe−θx

γdx.

Θέτοντας xγ = y, το οποίο συνεπάγεται x = y
1
γ και dx = 1

γ
y

1
γ
−1dy, λαμβάνου-

με

E(X) =
∫ ∞

0
θγye−θy

1
γ
y

1
γ
−1dy

=
∫ ∞

0
θy

1
γ e−θydy

=
Γ( 1

γ
+ 1)

θ
1
γ

∫ ∞
0

θ
1
γ

+1y( 1
γ

+1)−1e−θy

Γ( 1
γ

+ 1) dy

=
Γ( 1

γ
+ 1)

θ
1
γ

.

Η συνάρτηση εντός του ολοκληρώματος είναι η συνάρτηση πυκνότητας πι-

θανότητας της Γάμμα κατανομής με παραμέτρους ( 1
γ

+ 1, θ). Η ροπή k τάξης

υπολογίζεται ως

E(Xk) =
∫ ∞

0
xkθγxγ−1e−θx

γdx. (3.8.29)

α) 1ος τρόπος: Θέτουμε θxγ = y, το οποίο συνεπάγεται x =
(
y
θ

) 1
γ

και

dx = 1
γ

1
θ

1
γ y( 1

γ
)−1dy και η (3.8.29) γίνεται

E(Xk) =
∫ ∞

0

(
y

θ

) k
γ

θγ

(
y

θ

) γ−1
γ

e−y
1
γ

(
1
θ

) 1
γ

y( 1
γ

)−1dy
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=
∫ ∞

0
y
k+γ−1+1−γ

γ θ

(
1
θ

) k+γ−1+1
γ

e−ydy

= θ−
k
γ

∫ ∞
0

y
k
γ e−ydy.

Γνωρίζουμε ότι,

Γ(a) =
∫ ∞

0
xa−1e−xdx, (3.8.30)

οπότε έχουμε

E(Xk) = θ−
k
γ

∫ ∞
0

y
k
γ

+1−1e−ydy

=
Γ(k

γ
+ 1)

θ
k
γ

. (3.8.31)

β) 2ος τρόπος: Θέτουμε xγ = y, το οποίο συνεπάγεται x = y
1
γ και dx =

1
γ
y

1
γ
−1dy και η (3.8.29) γίνεται

E(Xk) =
∫ ∞

0
y
k
γ θe−θydy

=
Γ(k

γ
+ 1)

θ
k
γ

∫ ∞
0

y( k
γ

+1)−1θ
k
γ

+1e−θy

Γ(k
γ

+ 1)
dy

=
Γ(k

γ
+ 1)

θ
k
γ

. (3.8.32)

Παρατήρηση 5. Στη βιβλιογραφία (και στο λογισμικό R) η συνάρτηση πυ-

κνότητας της κατανομής Weibull εμφανίζεται και με τη μορφή

fX(x) = γ

θ

(
x

θ

)γ−1

e−(x
θ

)γ , x > 0, (3.8.33)
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με συνάρτηση κατανομής

FX(x) = 1− e−(x
θ

)γ , x > 0 (3.8.34)

και ροπή k-τάξης

E(Xk) = θkΓ(k
γ

+ 1). (3.8.35)

΄Ασκηση 11. Να αποδειχθεί η (3.8.35), αν η συνάρτηση πυκνότητας πιθανό-

τητας της τυχαίας μεταβλητής X δίνεται από τη σχέση (3.8.33).

3.9 Κατανομή Pareto με Παραμέτρους (a, θ)
Ορισμός 25. Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Pareto
με παραμέτρους a και θ ορίζεται ως

f(x) = aθa

(x+ θ)a+1 , x > 0, a > 0, θ > 0. (3.9.36)

Η συνάρτηση κατανομής υπολογίζεται ως

F (x) =
∫ x

0

aθa

(x+ θ)a+1 dx

= aθa
∫ x

0
(x+ θ)−a−1dx

= aθa
[

(x+ θ)−a
−a

]∣∣∣∣∣
x

0

= 1−
(

θ

x+ θ

)a
. (3.9.37)
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Σχήμα 3.9: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της κατανομής Pareto με παραμέτρους a = 2 και

θ = (0.20, 0.40, 0.80).

Θεώρημα 3.9.1. Αν η X ακολουθεί την κατανομή Pareto με παραμέτρους
a και θ, όπως ορίζεται στη σχέση (3.9.36), τότε η μέση της τιμή είναι

E(X) = θ

a− 1 (3.9.38)

και η διασπορά

V ar(X) = aθ2

(a− 1)2(a− 2) . (3.9.39)

Απόδειξη: Η μέση τιμή της κατανομής Pareto είναι

E(X) =
∫ ∞

0
xf(x)dx

= −
∫ ∞

0
xd(1− F (x))

= −
∫ ∞

0
xd

[(
θ

x+ θ

)a] ( ∫
udv = uv −

∫
vdu

)

= −x
[(

θ

x+ θ

)a]∣∣∣∣∣
∞

0
+
∫ ∞

0

(
θ

x+ θ

)a
dx (3.9.40)
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= 0 + θ

a− 1

∫ ∞
0

(a− 1)θa−1

(x+ θ)a−1+1 dx (3.9.41)

= θ

a− 1 , a > 1. (3.9.42)

Σημείωση: 1) Το πρώτο μέρος της (3.9.40) ισούται με μηδέν (0), διότι,

lim
x→∞x

[(
θ

x+ θ

)a]
= θa lim

x→∞
x

(x+ θ)a .

Εφαρμόζοντας τον κανόνα του De L’ Hopital (παραγωγίζουμε αριθμητή και

παρονομαστή χωριστά), έχουμε (επειδή a− 1 > 0)

θa lim
x→∞

1
a(x+ θ)a−1 = 0, a > 1.

2) Η σχέση εντός του ολοκληρώματος στη σχέση (3.9.41) είναι η συνάρτηση

πυκνότητας πιθανότητας της κατανομής Pareto με παραμέτρους (a− 1, θ).
Η ροπή δεύτερης τάξης υπολογίζεται ως

E(X2) =
∫ ∞

0
x2f(x)dx

= −
∫ ∞

0
x2d(1− F (x))

= −x2[1− F (x)]
∣∣∣∣∣
∞

0
+ 2

∫ ∞
0

x[1− F (x)]dx

= −x2
(

θ

x+ θ

)a∣∣∣∣∣
∞

0
+ 2

∫ ∞
0

x

(
θ

x+ θ

)a
dx

= 0 + 2
∫ ∞

0
x

(
θ

x+ θ

)a
dx, a > 2
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=
(

2θ
a− 1

)∫ ∞
0

x
(a− 1)θa−1

(x+ θ)(a−1)+1 dx.

Γνωρίζουμε ότι, αν X ∼ Pa(a, θ), τότε E(X) = θ
a−1 και αν X ∼ Pa(a− 1, θ),

τότε

E(X) = θ

(a− 1)− 1 .

Οπότε έχουμε

E(X2) =
(

2θ
a− 1

)(
θ

(a− 1)− 1

)

=
(

2θ
a− 1

)(
θ

a− 2

)
. (3.9.43)

΄Ετσι, η διασπορά γίνεται

Var(X) =
(

2θ
a− 1

)(
θ

a− 2

)
−
(

θ

a− 1

)2

= aθ2

(a− 1)2(a− 2) . (3.9.44)

Παράδειγμα 5. ΄Εστω X τυχαία μεταβλητή με κατανομή Pareto με παραμέ-

τρους a και θ, όπως ορίζεται στη σχέση (3.9.36). Να αποδείξετε ότι

E(X3) = 6θ3

(a− 1)(a− 2)(a− 3)

και να υπολογίσετε την ασυμμετρία.

Λύση: Η ροπή τρίτης τάξης υπολογίζεται ως

E(X3) =
∫ ∞

0
x3f(x)dx
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= −
∫ ∞

0
x3d(1− F (x))

= −x3[1− F (x)]
∣∣∣∣∣
∞

0
+ 3

∫ ∞
0

x2[1− F (x)]dx

= −x3
(

θ

x+ θ

)a∣∣∣∣∣
∞

0
+ 3

∫ ∞
0

x2
(

θ

x+ θ

)a
dx

= 0 + 3
∫ ∞

0
x2
(

θ

x+ θ

)a
dx, a > 3

=
(

3θ
a− 1

)∫ ∞
0

x2 (a− 1)θa−1

(x+ θ)(a−1)+1 dx. (3.9.45)

Γνωρίζουμε ότι αν X ∼ Pa(a, θ), τότε E(X) = θ
a−1 και αν X ∼ Pa(a −

1, θ), τότε E(X2) = 2θ2

(a−1)(a−2) . Εντός του ολοκληρώματος στη σχέση (3.9.45)

έχουμε τη δεύτερη ροπή της κατανομής Pareto με παραμέτρους (a−1, θ). ΄Ετσι

έχουμε

E(X3) =
(

3θ
a− 1

)(
2θ

(a− 1)− 1

)(
θ

(a− 2)− 1

)

= 6θ3

(a− 1)(a− 2)(a− 3)

και η ασυμμετρία υπολογίζεται ως

γ1 = E[X − E(X)]3
E{[X − E(X)]2}3/2

= E(X3)− [E(X)]3 − 3E(X2)E(X) + 3[E(X)]2E(X)
{E(X2)− [E(X)]2}3/2
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= E(X3) + 2[E(X)]3 − 3E(X2)E(X)
{E(X2)− [E(X)]2}3/2

=
6θ3

(a−1)(a−2)(a−3) + 2 θ3

(a−1)3 − 3 2θ2

(a−1)(a−2)
θ

(a−1)(
2θ2

(a−1)(a−2) −
θ2

(a−1)2

)3/2

=
2θ3a(a+1)

(a−1)3(a−2)(a−3)(
aθ2

(a−1)2(a−2)

)3/2

= 2(a+ 1)(a− 2)(1/2)

a(1/2)(a− 3) .

3.10 Απλή Κατανομή Pareto
Ορισμός 26. Η συνάρτηση πυκνότητας πιθανότητας της απλής κατανομής

Pareto ορίζεται ως

f(x) = aθa

xa+1 , x > θ, a > 0. (3.10.46)

Η αθροιστική συνάρτηση υπολογίζεται ως

F (x) =
∫ x

θ

aθa

xa+1 dx

= aθa
∫ x

θ
x−a−1dx



52 Κεφάλαιο 3. Συνεχείς Κατανομές

= aθa
(
x−a

−a

)∣∣∣∣∣
x

θ

= 1−
(
θ

x

)a
, x > θ. (3.10.47)

Σχήμα 3.10: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της απλής κατανομής Pareto με παραμέτρους a =
3 και θ = (0.40, 0.80, 1.60).

Θεώρημα 3.10.1. Αν X ακολουθεί την απλή κατανομή Pareto με παρα-
μέτρους a και θ, όπως ορίζεται στη σχέση (3.10.46), τότε η μέση της τιμή
είναι

E(X) = aθ

a− 1 , a > 1.

Απόδειξη: Η μέση τιμή της κατανομής Pareto υπολογίζεται ως

E(X) =
∫ ∞
θ

xf(x)dx

=
∫ ∞
θ

x
aθa

xa+1 dx

= aθa
x−a+1

−a+ 1

∣∣∣∣∣
∞

θ
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= aθ

a− 1 , a > 1, (3.10.48)

η δεύτερη ροπή ως

E(X2) =
∫ ∞
θ

x2f(x)dx

=
∫ ∞
θ

x2 aθ
a

xa+1 dx

= −aθa x
−a+2

−a+ 2

∣∣∣∣∣
∞

θ

= aθ2

a− 2 , a > 2 (3.10.49)

και η ροπή k-τάξης ως

E(Xk) =
∫ ∞
θ

xkf(x)dx

=
∫ ∞
θ

xk
aθa

xa+1 dx

= −aθa x
k−a

k − a

∣∣∣∣∣
∞

θ

= aθk

a− k
, a > k. (3.10.50)

΄Ασκηση 12. ΄Εστω η τυχαία μεταβλητή Y , ακολουθεί την λογαριθμοκανο-

νική κατανομή με παραμέτρους µ = 9 και σ2 = 3. Να βρεθούν η μέση τιμή και

η διασπορά της Y .
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3.11 Κατανομή Burr
Ορισμός 27. ΄Εστω ότι η τυχαία μεταβλητή Y ακολουθεί την κατανομή Pa-
reto με παραμέτρους a > 0 και θ > 0, και αθροιστική συνάρτηση όπως ορίστηκε
στη σχέση (3.9.37), δηλαδή

P (Y ≤ y) = FY (y) = 1−
(

θ

y + θ

)a
, (3.11.51)

τότε η τυχαία μεταβλητή X = Y
1
r ακολουθεί την κατανομή Burr με αθροιστική

συνάρτηση

P (X ≤ x) = FX(x) = 1−
(

θ

xr + θ

)a
, x > 0. (3.11.52)

Ορισμός 28. Η συνάρτηση πυκνότητας πιθανότητας της κατανομή Burr λαμ-
βάνεται, αν πάρουμε την παράγωγο της FX(x), όπως ορίζεται στην (3.11.52),
δηλαδή,

f(x) = arθaxr−1(xr + θ)−a−1, x > 0. (3.11.53)

Σχήμα 3.11: Γραφική παράσταση της συνάρτησης πυκνότητας πιθανότητας και

της αθροιστικής συνάρτησης της κατανομής Burr με παραμέτρους θ = 2, a =
(1, 3, 5) και r = 3.

Παρατήρηση 6. Συνήθως, όταν εμφανίζονται (εκθετικά) μεγάλες ζημιές,

η κατανομή Pareto θεωρείται ως μία κατάλληλη κατανομή. Υπάρχουν όμως

περιπτώσεις, που χρειαζόμαστε μία κατανομή με βαριά ουρά και καλύτερη προ-

σαρμοστικότητα της κατανομής Pareto, η οποία περιλαμβάνει και μη-μονότονες

συναρτήσεις πυκνότητας πιθανότητας. Στην περίπτωση αυτή, χρησιμοποιούμε

την κατανομή Burr.
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Θεώρημα 3.11.1. Η ροπή k-τάξης μιας τυχαίας μεταβλητής X που ακολου-
θεί την κατανομή Burr, δίνεται από τη σχέση

E(Xk) = 1
Γ(a)θ

k/rΓ(1 + k

r
)Γ(a− k

r
), k < ar. (3.11.54)

Απόδειξη: Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Burr
στη σχέση (3.11.53) γράφεται και ως

f(x) = ar

θ
xr−1

(
1 + xr

θ

)−a−1

, x > 0.

Θέτοντας
xr

θ
= y, το οποίο συνεπάγεται x = (θy)1/r

και
1
θ
rxr−1dx = dy, η

ροπή k-τάξης υπολογίζεται ως

E(Xk) =
∫ ∞

0
xk
ar

θ
xr−1

(
1 + xr

θ

)−a−1

dx

= aθk/r
∫ ∞

0
yk/r(1 + y)−a−1dx

= aθk/r
∫ ∞

0
yk/r

1
(1 + y)a+1

= aθk/r
∫ ∞

0
y(k/r+1)−1 1

(1 + y)(k/r+1)+(a−k/r)

= aθk/rB

(
k

r
+ 1, a− k

r

)
(3.11.55)

= aθk/r
Γ
(
k
r

+ 1
)

Γ
(
a− k

r

)
Γ(a+ 1)

από όπου προκύπτει η (3.11.54).
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Παρατήρηση 7. Για τον υπολογισμό της (3.11.55), έχουμε κάνει χρήση της

συνάρτησης

B(a, b) = Γ(a)Γ(b)
Γ(a+ b) =

∫ ∞
0

xa−1

(1 + x)a+bdx και Γ(a+ 1) = aΓ(a).

3.12 Κατανομές Ακραίων Τιμών

Η θεωρία ακραίων τιμών (extreme value) προήλθε κυρίως από τις ανάγκες των

αστρονόμων να δεχθούν ή να απορρίψουν απομακρυσμένες παρατηρήσεις. ΄Ε-

χει σαν στόχο την εκτίμηση της πιθανότητας ακραίων (σπάνιων) γεγονότων τα

οποία εμφανίζονται στις ουρές κατανομών. Η θεωρία ακραίων τιμών έχει μια

τεράστια ποικιλία εφαρμογών που αφορούν φυσικά φαινόμενα, όπως βροχοπτώ-

σεις, πλημμύρες, ατμοσφαιρική ρύπανση, κλ.π.

3.12.1 Κατανομή Τύπου Gumbel
Ορισμός 29. Μια τυχαία μεταβλητή X ακολουθεί την κατανομή τύπου Gum-
bel με παραμέτρους s > 0 και m ∈ <, αν η συνάρτηση πυκνότητας πιθανότητας
ορίζεται ως

f(x) = 1
s
e−

x−m
s e−e

−x−ms , x ≥ m (3.12.56)

και η αθροιστική συνάρτηση ως

F (x) = e−e
−x−ms . (3.12.57)

Θεώρημα 3.12.1. Η ροπογεννήτρια της κατανομής τύπου Gumbel, όπως
εμφανίζεται στη σχέση (3.12.56) ισούται με

MX(t) = etmΓ(1− ts), ts < 1.

Λύση: ΄Εστω Z = e−
X−m
s ⇒ X = m− s lnZ και dx = − s

z
dz. Συνεπώς,

η Z έχει εκθετική κατανομή της μορφής

f(z) = e−z, z ≥ 0.
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