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3.1 CONTINUOUS PROBABILITY

DISTRIBUTIONS

 Continuous Random Variable (r.v.)
 It can take any value within a given interval:

 We are not interested in the probability to take a specific value:

 When Y is continuous r.v., P(Y=y)=0 for every y.

 We are interested in the probability that Y belongs to an interval (this is, for 
example, P(Y ∈ (a,b)) where a<b)

 This probability can be given in terms of a “density function” (συνάρτηση 
πυκνότητας), f(x):

𝑃(𝑌 ∈(a,b))=׬
𝑎

𝑏
𝑓 𝑥 𝑑𝑥

 This density is the derivative of the Cumulative Distribution Function 
(αθροιστική συνάρτηση κατανομής) (CDF) of Y: f(x)=𝐹′ 𝑥 . Therefore

𝑃(𝑌 ∈(a,b))=׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥=𝐹 𝑏 − 𝐹 𝑎 .

 Properties of a CDF:

 𝐹 −∞ = 0
 F(∞) = 1
 F is non-decreasing

 F(x) = P(Y≤x) where x can be any real number, or −∞, or ∞. 2



3.2 MOMENTS (ΡΟΠΕΣ)OF CONTINUOUS

RANDOM VARIABLES

 Expectation (or mean)

 𝜇 =E[Y]=׬−∞
∞
𝑦𝑓 𝑦 𝑑𝑦

 Variance

 Var(Y)=׬−∞
∞

𝑦 − 𝐸[𝑌] 2𝑓 𝑦 𝑑𝑦

 In general, the k-th moment of Y is given by

 𝜇𝑘 = 𝐸 𝑌𝑘 = ∞−׬
∞
𝑦𝑘𝑓 𝑦 𝑑𝑦

 The k-th central moment of Y is given by

 𝜇𝑘
0 = 𝐸 𝑌 − 𝜇 𝑘 = ∞−׬

∞
𝑦 − 𝜇 𝑘𝑓 𝑦 𝑑𝑦

 Therefore Var(Y) = 𝜇2
0
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3.3 NORMAL (OR GAUSSIAN) DISTRIBUTION

 A r.v. Y is normal if its density function is of the form

𝑓 𝑦 =
1

2𝜋𝜎2
𝑒
−
1

2

𝑦−𝜇

𝜎

2

 f(y) : height of the distribution at y.

 µ : mean of the random variable

 𝜎 : standard deviation of the random variable

 e = 2.718

 𝜋 = 3.142

 Notation: Y~N 𝜇, 𝜎2
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3.4 STANDARD NORMAL DISTRIBUTION

 The normal distribution with zero mean and unit 
variance is called “standard normal distribution”.

 If Z follows the standard normal distribution, we write 
Z~N(0,1)

 If Y~N 𝜇, 𝜎2 then the r.v. 𝑍 =
𝑌−𝜇

𝜎
~N(0,1)

 Z is a transformation of Y

 If we know the cumulative distribution of Z then we know 
the cumulative distribution of Y

 Example:

if 𝜇=1 and 𝜎2=4 and we want to find the 
probability 𝑃(𝑌 ∈(𝑎,𝑏)) then this equals the 

probability 𝑃 𝑍 ∈
𝑎−𝜇

𝜎
,
𝑏−𝜇

𝜎 5



3.4 STANDARD NORMAL DISTRIBUTION

(CONTINUED)

 Important numbers:

 𝑃 −1.96 ≤ 𝑍 ≤ 1.96 = 0.95 = 95%

 Note: The density of any normal r.v., Y, is 

symmetric around its mean. Therefore, 

 for every number α ≥ 0, 𝑃 𝑌 ≤ 𝜇 − 𝛼 = 𝑃 𝑌 ≥ 𝜇 + 𝛼

 In particular, for α = 0, 𝑃 𝑌 ≤ 𝜇 = 𝑃 𝑌 ≥ 𝜇 =
1

2
= 0.5 =

50%
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3.5 JOINT DISTRIBUTION OF RANDOM

VARIABLES

 It is usual that in our studies and research we have 

to deal with more than one random variables at the 

same time.

 Example: We would like explore a possible association 

between smoking of pregnant women and the salary of 

their children when they reach 30.

 The random variable that concerns smoking, say X, can 

take two values (1 if affirmative, 0 otherwise). The 

random variable that corresponds to the salary, say Y, 

can be the annual income.

 For each individual, we have two values (one for each 

random variable).
7



3.5 JOINT DISTRIBUTION OF RANDOM

VARIABLES (CONTINUED)

 We say that these variables have a joint (από κοινού) distribution 
with cumulative distribution function (CDF):

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥 𝑎𝑛𝑑 𝑌 ≤ 𝑦)

 𝐹𝑋,𝑌 has the following properties

 𝐹𝑋,𝑌 −∞, 𝑦 = 𝐹𝑋,𝑌 𝑥,−∞ = 0

 𝐹𝑋,𝑌(∞,∞) =1

 𝐹𝑋,𝑌 is increasing in both x and y.

 Note that 𝑃(𝑋 ≤ 𝑥)= 𝑃(𝑋 ≤ 𝑥 𝑎𝑛𝑑 𝑌 ≤ ∞). We say that the 
Marginal (περιθώρια) Distribution of X is 𝐹𝑋 𝑥 = 𝐹𝑋,𝑌(𝑥,∞) = 
𝑃(𝑋 ≤ 𝑥). Similarly, the Marginal Distribution of Y is 𝐹𝑌 𝑦 =
𝐹𝑋,𝑌(∞, 𝑦) = 𝑃(𝑌 ≤ 𝑦).

 The notion of the Joint Distribution is easily extended to more 
than 2 RVs. So, if 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑑 are RVs, their joint distribution 
is denoted as 

𝐹𝑋1,𝑋2,𝑋3,…,𝑋𝑑 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑
 The marginal distribution of, say, 𝑋2 is then

𝐹𝑋2 𝑥2 = 𝐹𝑋1,𝑋2,𝑋3,…,𝑋𝑑 ∞, 𝑥2, ∞, … ,∞ 8



3.6 INDEPENDENCE OF RANDOM VARIABLES

 If in the previous example were no association

between the two random variables, then intuitively

we could say that the two random variables are

“independent”

 In probabilistic terms, the occurrence of any value

of X would not affect any of the probabilities that Y

takes a value within any interval (a,b].

 More formally, we can say that X and Y are

independent if for any values x and y,

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦)
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3.6 INDEPENDENCE OF RANDOM VARIABLES

(CONTINUED)

 Case 1: Discrete random variables

 Let the RVs X and Y take the values 
…<x-2<x-1<x0<x1<x2<…, and …<y-2<y-1<y0<y1<y2<…,
respectively.

 Their Joint CDF is given by

𝐹𝑋,𝑌 𝑥, 𝑦 = ෍

𝑥𝑖≤𝑥,𝑦𝑗≤𝑦

𝑃 𝑋 = 𝑥𝑖 𝑎𝑛𝑑 𝑌 = 𝑦𝑗 = ෍

𝑥𝑖≤𝑥,𝑦𝑗≤𝑦

𝑃 𝑥𝑖 , 𝑦𝑗

= ෍

𝑥𝑖≤𝑥,𝑦𝑗≤𝑦

𝑓𝑋,𝑌 𝑥𝑖 , 𝑦𝑗

where 𝑓𝑋,𝑌 𝑥𝑖 , 𝑦𝑗 is the joint probability (mass) function of X
and Y.

 The marginal probability mass function of X is given by

𝑓𝑋 𝑥𝑖 = ෍

𝑦𝑗≤∞

𝑓𝑋,𝑌 𝑥𝑖 , 𝑦𝑗 = P(X = 𝑥𝑖)

Similarly for Y.
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3.6 INDEPENDENCE OF RANDOM VARIABLES

(CONTINUED)

 Case 1: Discrete random variables (continued)

 The marginal CDF of X is given by

𝐹𝑋 𝑥 = 𝐹𝑋,𝑌 𝑥,∞ = ෍

𝑥𝑖≤𝑥,𝑦𝑗≤∞

𝑃 𝑋 = 𝑥𝑖 𝑎𝑛𝑑 𝑌 = 𝑦𝑗

= ෍

𝑥𝑖≤𝑥,𝑦𝑗≤∞

𝑃 𝑥𝑖 , 𝑦𝑗 = ෍

𝑥𝑖≤𝑥,𝑦𝑗≤∞

𝑓𝑋,𝑌 𝑥𝑖 , 𝑦𝑗

Similarly we define 𝐹𝑌 𝑦 .

 We say that the two discrete RVs are independent if for 

every pair (𝑥𝑖 , 𝑦𝑗)

𝑓𝑋,𝑌 𝑥𝑖 , 𝑦𝑗 = 𝑓𝑋 𝑥𝑖 𝑓𝑌 𝑦𝑗
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3.6 INDEPENDENCE OF RANDOM VARIABLES

(CONTINUED)

 Case 2: Continuous random variables 

 Let now X and Y be two continuous random variables with 
joint CDF FX,Y . Then there exists a function fX,Y such that

𝐹𝑋,𝑌 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑎𝑛𝑑 𝑌 ≤ 𝑦 = න
−∞

𝑥

න
−∞

𝑦

𝑓𝑋,𝑌 𝑠, 𝑡 𝑑𝑡𝑑𝑠

 𝑓𝑋,𝑌 is called “joint probability density function” of X and Y.

 The marginal probability density function of X is then defined 
as 

𝑓𝑋 𝑥 = න

−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑡 𝑑𝑡

 Similarly, the marginal probability density function of Y is 
defined as 

𝑓𝑌 𝑦 = න

−∞

∞

𝑓𝑋,𝑌 𝑠, 𝑦 𝑑𝑠
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3.6 INDEPENDENCE OF RANDOM VARIABLES

(CONTINUED)

 Case 2: Continuous random variables (continued)

 It can be shown that X and Y are independent if for 

every x and y,

𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 𝑓𝑌(𝑦)
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3.7 DISTRIBUTION

 If Z is a r.v. and Z~N(0,1), then      follows the 

distribution with 1 degree of freedom

 The sum of the squares of n independent standard 

normal random variables follows the Chi-square 

distribution with n degrees of freedom           .

 Properties

 It is right-skewed (positive skewness) and non-negative

 Skewness decreases as n increases

 Its mean equals n

 Its mode is n-2

 Its median is approximately n-7

 Its variance is 2n
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3.8 STUDENT t-DISTRIBUTION

 Let Z~N(0,1) and Y~ . Then, if Z and Y are 

independent, we say that the r.v.

is the student t distribution with n degrees of 

freedom.

 We denote τ ~ t(n).

 It is leptokurtic due to its “fatter tails” than the ones 

of the normal distribution

 As n increases, t(n) approximates the standard 

normal distribution. 15



3.9 FISHER’S F DISTRIBUTION

 Let X1 and X2 two independent Chi-square 

distributions with degrees of freedom n and m, 

respectively. The random variable 

is called F distribution with degrees of freedom n

and m

 Properties

 F is nonnegative

 F is right-skewed

16



ΑΣΚΗΣΗ 4

Στον παρακάτω πίνακα αναγράφεται η από κοινού συνάρτηση 
κατανομής πιθανότητας των τυχαίων μεταβλητών Χ και Υ.
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y                         x 0 1 2 

0 0.2 0.2 0.2 

2 0.1 0.1 0.2 

 

Να εξετάσετε κατά πόσο οι τυχαίες μεταβλητές Χ και Υ είναι ανεξάρτητες.



ΑΣΚΗΣΗ 5

Αν δύο τυχαίες μεταβλητές Χ και Υ έχουν ως από κοινού 
συνάρτηση πυκνότητας πιθανότητας την ακόλουθη

𝑓𝑋,𝑌 = ቊ
4 𝑥 + 𝑦2 , αν 𝑥, 𝑦 > 0 και 𝑥 + 𝑦 ≤ 1

0, διαφορετικά

Να εξεταστεί αν οι Χ και Υ είναι ανεξάρτητες
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