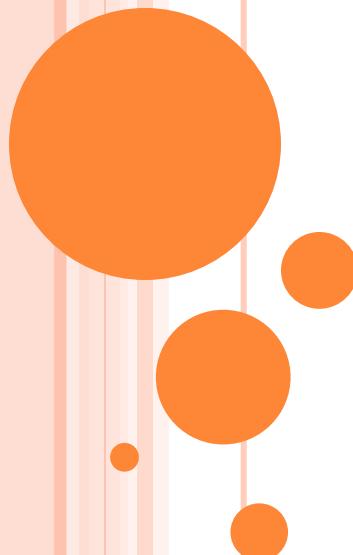


Πανεπιστήμιο Πειραιώς
Σχολή Χρηματοοικονομικής και Στατιστικής
Τμήμα Χρηματοοικονομικής και Τραπεζικής Διοικητικής

Πρόγραμμα Μεταπτυχιακών Σπουδών στη
Χρηματοοικονομική και Τραπεζική

ΠΡΟΠΑΡΑΣΚΕΥΑΣΤΙΚΟ ΜΑΘΗΜΑ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Μέρος 3ο



3.1 CONTINUOUS PROBABILITY DISTRIBUTIONS

- Continuous Random Variable (r.v.)
 - It can take any value within a given interval:
 - We are not interested in the probability to take a specific value:
 - When Y is continuous r.v., $P(Y=y)=0$ for every y .
 - We are interested in the probability that Y belongs to an interval (this is, for example, $P(Y \in (a,b))$ where $a < b$)
 - This probability can be given in terms of a “density function” (συνάρτηση πυκνότητας), $f(x)$:

$$P(Y \in (a,b)) = \int_a^b f(x)dx$$

- This density is the derivative of the Cumulative Distribution Function (αθροιστική συνάρτηση κατανομής) (CDF) of Y : $f(x)=F'(x)$. Therefore

$$P(Y \in (a,b)) = \int_a^b f(x)dx = F(b) - F(a).$$

- Properties of a CDF:
 - $F(-\infty) = 0$
 - $F(\infty) = 1$
 - F is non-decreasing
 - $F(x) = P(Y \leq x)$ where x can be any real number, or $-\infty$, or ∞ .

3.2 MOMENTS (ΡΟΠΕΣ) OF CONTINUOUS RANDOM VARIABLES

- Expectation (or mean)
 - $\mu = E[Y] = \int_{-\infty}^{\infty} y f(y) dy$
- Variance
 - $\text{Var}(Y) = \int_{-\infty}^{\infty} (y - E[Y])^2 f(y) dy$
- In general, the k-th moment of Y is given by
 - $\mu_k = E[Y^k] = \int_{-\infty}^{\infty} y^k f(y) dy$
- The k-th central moment of Y is given by
 - $\mu_k^0 = E[(Y - \mu)^k] = \int_{-\infty}^{\infty} (y - \mu)^k f(y) dy$
 - Therefore $\text{Var}(Y) = \mu_2^0$

3.3 NORMAL (OR GAUSSIAN) DISTRIBUTION

- A r.v. Y is normal if its density function is of the form

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

- $f(y)$: height of the distribution at y .
- μ : mean of the random variable
- σ : standard deviation of the random variable
- $e = 2.718$
- $\pi = 3.142$
- Notation: $Y \sim N(\mu, \sigma^2)$

3.4 STANDARD NORMAL DISTRIBUTION

- The normal distribution with zero mean and unit variance is called “*standard normal distribution*”.
- If Z follows the standard normal distribution, we write $Z \sim N(0, 1)$
- If $Y \sim N(\mu, \sigma^2)$ then the r.v. $Z = \frac{Y-\mu}{\sigma} \sim N(0, 1)$
- Z is a transformation of Y
- If we know the cumulative distribution of Z then we know the cumulative distribution of Y
- Example:
 - if $\mu=1$ and $\sigma^2=4$ and we want to find the probability $P(Y \in (a, b))$ then this equals the probability $P\left(Z \in \left(\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma}\right)\right)$

3.4 STANDARD NORMAL DISTRIBUTION (CONTINUED)

- Important numbers:
 - $P(-1.96 \leq Z \leq 1.96) = 0.95 = 95\%$
- Note: The density of any normal r.v., Y , is symmetric around its mean. Therefore,
 - for every number $\alpha \geq 0$, $P(Y \leq \mu - \alpha) = P(Y \geq \mu + \alpha)$
 - In particular, for $\alpha = 0$, $P(Y \leq \mu) = P(Y \geq \mu) = \frac{1}{2} = 0.5 = 50\%$

3.5 JOINT DISTRIBUTION OF RANDOM VARIABLES

- It is usual that in our studies and research we have to deal with more than one random variables at the same time.
 - Example: We would like explore a possible association between smoking of pregnant women and the salary of their children when they reach 30.
 - The random variable that concerns smoking, say X , can take two values (1 if affirmative, 0 otherwise). The random variable that corresponds to the salary, say Y , can be the annual income.
 - For each individual, we have two values (one for each random variable).

3.5 JOINT DISTRIBUTION OF RANDOM VARIABLES (CONTINUED)

- We say that these variables have a joint (από κοινού) distribution with cumulative distribution function (CDF):
$$F_{X,Y}(x, y) = P(X \leq x \text{ and } Y \leq y)$$
- $F_{X,Y}$ has the following properties
 - $F_{X,Y}(-\infty, y) = F_{X,Y}(x, -\infty) = 0$
 - $F_{X,Y}(\infty, \infty) = 1$
 - $F_{X,Y}$ is increasing in both x and y .
- Note that $P(X \leq x) = P(X \leq x \text{ and } Y \leq \infty)$. We say that the Marginal (περιθώρια) Distribution of X is $F_X(x) = F_{X,Y}(x, \infty) = P(X \leq x)$. Similarly, the Marginal Distribution of Y is $F_Y(y) = F_{X,Y}(\infty, y) = P(Y \leq y)$.
- The notion of the Joint Distribution is easily extended to more than 2 RVs. So, if $X_1, X_2, X_3, \dots, X_d$ are RVs, their joint distribution is denoted as

$$F_{X_1, X_2, X_3, \dots, X_d}(x_1, x_2, x_3, \dots, x_d)$$

- The marginal distribution of, say, X_2 is then

$$F_{X_2}(x_2) = F_{X_1, X_2, X_3, \dots, X_d}(\infty, x_2, \infty, \dots, \infty)$$

3.6 INDEPENDENCE OF RANDOM VARIABLES

- If in the previous example were no association between the two random variables, then intuitively we could say that the two random variables are “independent”
- In probabilistic terms, the occurrence of any value of X would not affect any of the probabilities that Y takes a value within any interval $(a,b]$.
- More formally, we can say that X and Y are independent if for any values x and y ,

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

3.6 INDEPENDENCE OF RANDOM VARIABLES (CONTINUED)

Case 1: Discrete random variables

- Let the RVs X and Y take the values $\dots < x_{-2} < x_{-1} < x_0 < x_1 < x_2 < \dots$, and $\dots < y_{-2} < y_{-1} < y_0 < y_1 < y_2 < \dots$, respectively.
- Their Joint CDF is given by

$$\begin{aligned} F_{X,Y}(x, y) &= \sum_{x_i \leq x, y_j \leq y} P(X = x_i \text{ and } Y = y_j) = \sum_{x_i \leq x, y_j \leq y} P(x_i, y_j) \\ &= \sum_{x_i \leq x, y_j \leq y} f_{X,Y}(x_i, y_j) \end{aligned}$$

where $f_{X,Y}(x_i, y_j)$ is the joint probability (mass) function of X and Y .

- The marginal probability mass function of X is given by

$$f_X(x_i) = \sum_{y_j \leq \infty} f_{X,Y}(x_i, y_j) = P(X = x_i)$$

Similarly for Y .

3.6 INDEPENDENCE OF RANDOM VARIABLES (CONTINUED)

- Case 1: Discrete random variables (continued)

- The marginal CDF of X is given by

$$\begin{aligned} F_X(x) &= F_{X,Y}(x, \infty) = \sum_{x_i \leq x, y_j \leq \infty} P(X = x_i \text{ and } Y = y_j) \\ &= \sum_{x_i \leq x, y_j \leq \infty} P(x_i, y_j) = \sum_{x_i \leq x, y_j \leq \infty} f_{X,Y}(x_i, y_j) \end{aligned}$$

Similarly we define $F_Y(y)$.

- We say that the two discrete RVs are **independent** if for every pair (x_i, y_j)

$$f_{X,Y}(x_i, y_j) = f_X(x_i)f_Y(y_j)$$

3.6 INDEPENDENCE OF RANDOM VARIABLES (CONTINUED)

- Case 2: Continuous random variables
 - Let now X and Y be two continuous random variables with joint CDF $F_{X,Y}$. Then there exists a function $f_{X,Y}$ such that
$$F_{X,Y}(x, y) = P(X \leq x \text{ and } Y \leq y) = \int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(s, t) dt ds$$
 - $f_{X,Y}$ is called “joint probability density function” of X and Y .
 - The marginal probability density function of X is then defined as

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, t) dt$$

- Similarly, the marginal probability density function of Y is defined as

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(s, y) ds$$

3.6 INDEPENDENCE OF RANDOM VARIABLES (CONTINUED)

- Case 2: Continuous random variables (continued)
 - It can be shown that X and Y are independent if for every x and y ,

$$f_{X,Y}(x, y) = f_X(x)f_Y(y)$$

3.7 χ^2 DISTRIBUTION

- If Z is a r.v. and $Z \sim N(0,1)$, then Z^2 follows the χ^2 distribution with 1 degree of freedom
- The sum of the squares of n independent standard normal random variables follows the Chi-square distribution with n degrees of freedom $\chi^2(n)$.
- Properties
 - It is right-skewed (positive skewness) and non-negative
 - Skewness decreases as n increases
 - Its mean equals n
 - Its mode is $n-2$
 - Its median is approximately $n-7$
 - Its variance is $2n$

3.8 STUDENT t -DISTRIBUTION

- Let $Z \sim N(0,1)$ and $Y \sim \chi^2(n)$. Then, if Z and Y are independent, we say that the r.v.

$$\tau = \frac{Z}{\sqrt{Y/n}}$$

is the student t distribution with n degrees of freedom.

- We denote $\tau \sim t(n)$.
- It is leptokurtic due to its “*fatter tails*” than the ones of the normal distribution
- As n increases, $t(n)$ approximates the standard normal distribution.

3.9 FISHER'S F DISTRIBUTION

- Let X_1 and X_2 two **independent** Chi-square distributions with degrees of freedom n and m , respectively. The random variable

$$F = \frac{X_1/n}{X_2/m} \sim F(n, m)$$

is called F distribution with degrees of freedom n and m

- Properties
 - F is nonnegative
 - F is right-skewed

ΑΣΚΗΣΗ 4

Στον παρακάτω πίνακα αναγράφεται η από κοινού συνάρτηση κατανομής πιθανότητας των τυχαίων μεταβλητών X και Y .

y	x	0	1	2
0		0.2	0.2	0.2
2		0.1	0.1	0.2

Να εξετάσετε κατά πόσο οι τυχαίες μεταβλητές X και Y είναι ανεξάρτητες.

ΑΣΚΗΣΗ 5

Αν δύο τυχαίες μεταβλητές X και Y έχουν ως από κοινού συνάρτηση πυκνότητας πιθανότητας την ακόλουθη

$$f_{X,Y} = \begin{cases} 4(x + y^2), & \text{αν } x, y > 0 \text{ και } x + y \leq 1 \\ 0, & \text{διαφορετικά} \end{cases}$$

Να εξεταστεί αν οι X και Y είναι ανεξάρτητες