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3.1 CONTINUOUS PROBABILITY
DISTRIBUTIONS

Continuous Random Variable (r.v.)

It can take any value within a given interval:
We are not interested in the probability to take a specific value:
When 'Y is continuous r.v., P(Y=y)=0 for every y.

We are interested in the probability that Y belongs to an interval (this is, for
example, P(Y € (a,b)) where a<b)

This probability can be given in terms of a “density function” (cuvdpTtnon
TTUKvVOTNTAG), f(X):
b
P(Y €(@b))=f f(x)dx
This density is the derivative of the Cumulative Distribution Function
(aBpoioTikn ouvapTtnon katavoung) (CDF) of Y: f(X)=F'(x). Therefore

P(Y €@b)=[, fF(x)dx=F(b) - F(a).

Properties of a CDF:
F(—) =0
F(oo) =1
F is non-decreasing
F(x) = P(Y<x) where x can be any real number, or —oo, or oo.



3.2 MOMENTS (PONEz)OF CONTINUOUS
RANDOM VARIABLES

Expectation (or mean)
u=ElYI=[_, yf)dy

Variance
Var(Y)={__ (v — E[YD*f ()dy

In general, the k-th moment of Y is given by
we = EYK] = O y*f(y)dy

The k-th central moment of Y is given by
up = E[(Y — ¥ = [ (v — w*f()dy
Therefore Var(Y) = ud



3.3 NORMAL (OR GAUSSIAN) DISTRIBUTION

Ar.v. Y is normal if its density function is of the form

o) = e o)

f(y) : height of the distribution at y.
U mean of the random variable

o . standard deviation of the random variable
e=2.718

m=3.142
Notation: Y~N(u, o2)



3.4 STANDARD NORMAL DISTRIBUTION

The normal distribution with zero mean and unit
variance is called “standard normal distribution”.

If Z follows the standard normal distribution, we write
Z~N(0,1)

If Y~N(u, 02) then the r.v. Z = 2=£ ~N(0,1)

(o)
Z IS a transformation of Y

If we know the cumulative distribution of Z then we know
the cumulative distribution of Y
Example:

if u=1 and o?=4 and we want to find the
probability P(Y €(a,b)) then this equals the

orobability P (z e (©, ”‘“))

o o




3.4 STANDARD NORMAL DISTRIBUTION
(CONTINUED)

Important numbers:
P(—1.96 < Z < 1.96) = 0.95 = 95%
Note: The density of any normal r.v., Y, Is
symmetric around its mean. Therefore,
foreverynumbera > 0,P(Y<u—a)=PY =>u+a)

In particular, fora =0, P(Y <u) =P =pun) = % =0.5=
50%



3.5 JOINT DISTRIBUTION OF RANDOM
VARIABLES

It Is usual that in our studies and research we have
to deal with more than one random variables at the
same time.

Example: We would like explore a possible association
between smoking of pregnant women and the salary of
their children when they reach 30.

The random variable that concerns smoking, say X, can
take two values (1 if affirmative, O otherwise). The
random variable that corresponds to the salary, say Y,
can be the annual income.

For each individual, we have two values (one for each
random variable).



3.5 JOINT DISTRIBUTION OF RANDOM
VARIABLES (CONTINUED)

We say that these variables have a joint (o116 koivou) distribution
with cumulative distribution function (CDF):
Fyy(x,y) =P(X<xandY <y)

Fyx y has the following properties
FX,Y(_OOJ y) = FX,Y(x» —o0) =0
Fyy(o0,0) =1
Fyy is increasing in both x and y.
Note that P(X < x)=P(X < xand Y < »). We say that the

Marginal (repiBwpia) Distribution of X is Fy(x) = Fyy(x, ) =
P(X < x). Similarly, the Marginal Dlstrlbutlon of Yis Fy(y) =

Fxy(oo,y) = P(Y < y).

The notion of the Joint Distribution is easily extended to more
than 2 RVs. So, if X4, X,, X3, ..., X4 are RVs, their joint distribution
Is denoted as

Fx, %, Xa,..% (X1, X2, X3, vy Xgq )
The marginal distribution of, say, X, is then

Fy, (x3) = Fx, x,%s,..%4 (0, x5, 9, ..., )



3.6 INDEPENDENCE OF RANDOM VARIABLES

If in the previous example were no association
between the two random variables, then intuitively
we could say that the two random variables are
“independent”

In probabilistic terms, the occurrence of any value
of X would not affect any of the probabillities that Y
takes a value within any interval (a,b].

More formally, we can say that X and Y are
iIndependent if for any values x and vy,

Fxy(x,y) = Fx(x)Fy(y)



3.6 INDEPENDENCE OF RANDOM VARIABLES
(CONTINUED)

Case 1: Discrete random variables

Let the RVs X and Y take the values
X <K <K<K <K<, and ... <YLY 1 <Y<Y;1<Y,<...,
respectively.

Their Joint CDF is given by
Fyy(x,y) = Z P(X =x;andY = yj) = z P(xl-,yj)

XisX,yjsy XisX,Yjsy
= Z fX,Y(xi:yj)
xin,ijy
where fyy(x;, ;) is the joint probability (mass) function of X
and Y.

The marginal probability mass function of X is given by

fx(x;) = z fX,Y(xirYj) = P(X = x;)
yjs®

Similarly for Y.



3.6 INDEPENDENCE OF RANDOM VARIABLES
(CONTINUED)

Case 1: Discrete random variables (continued)
The marginal CDF of X is given by

Fy(x) = FX,Y(x, ©) = Z P(X =x;and Y = yj)

XisSX,yjs00
= Z P(x;y;) = z fxy (xi,v7)
XiSX,y js0 XisSX,y js0

Similarly we define Fy(y).
We say that the two discrete RVs are independent if for
every pair (x;, y;)

fxy (% v;) = ) fy (v))



3.6 INDEPENDENCE OF RANDOM VARIABLES
(CONTINUED)

Case 2: Continuous random variables

Let now X and Y be two continuous random variables with
joint CDF Fy . Then there exists a functlon fy y such that

Fyy(x,y)=PX <xandY <y) = f f fxy(s, t)dtds

fx v is called “joint probability density function” of X and Y.

The marginal probability density function of X is then defined
as

fe() = j Far (G 0)dt

Similarly, the marginal_probability density function of Y is
defined as

f) = j Fuy(s,y)ds



3.6 INDEPENDENCE OF RANDOM VARIABLES
(CONTINUED)

Case 2: Continuous random variables (continued)

It can be shown that X and Y are independent if for
every X and vy,

fX,Y(xr y) = fx()fy ()



3.7 ¥? DISTRIBUTION

If Z is a r.v. and Z~N(0,1), then Z2 follows the ¥~
distribution with 1 degree of freedom

The sum of the squares of n independent standard
normal random variables follows the Chi-square
distribution with n degrees of freedom X~ (1)

Properties
It is right-skewed (positive skewness) and non-negative
Skewness decreases as n increases
Its mean equals n
Its mode is n-2
Its median is approximately n-7
Its variance is 2n



3.8 STUDENT t-DISTRIBUTION

Let Z~N(0,1) and Y~ x*(n). Then, ifZand Y are
Independent, we say that the r.v.
X

JY/n

T =

IS the student t distribution with n degrees of
freedom.
We denote 1 ~ t(n).

It is leptokurtic due to its “fatter tails” than the ones
of the normal distribution

As n increases, t(n) approximates the standard
normal distribution.



3.9 FISHER'S F DISTRIBUTION

Let X; and X, two independent Chi-square
distributions with degrees of freedom n and m,

respectively. The random variable
X, /n

X,/m
IS called F distribution with degrees of freedom n
and m
Properties
F is nonnegative
F is right-skewed

F = ~F(n,m)



ASZKHzH 4

2TOV TTAPOAKATW TTiVOKA avaypAa@EeTal N atro KoIvou ouvaptnon
KATAVOUNG TTIBavOTNTAC TWV TUXAiwV JETaBANTwY X Kai Y.
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Na eCeTAOETE KATA TTOCO OI TUXAieG METABANTEC X Kal Y gival aveEapTnTEG.




AZKHZIH 5

Av 0UO Tuxaieg HETARBANTEG X KAl Y €XOUV WG OTTO KOIVOU
guvapTnon TTUKVOTNTAG TTIBavoTNTAG TNV aKOAouOn

fry = 4(x+y2), avx,y>0katx +y <1
o 0, SLaOPETIKG

Na e¢etaoTei av o1 X Kal Y gival avegapTnTeC



