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4.1 EXPECTATION OF A FUNCTION OF
DISCRETE RANDOM VARIABLES

Let X and Y be two discrete RVs with joint CDF Fy ., and joint probability
mass function fy . Let u(X,Y) be a function of these variables. If this
function satisfies a quite general condition, then u(X,Y) is also a random

variable. Moreover,

FuGnl = ) () ()

Xj £00,y ;<00

Simple examples
If u(X,Y) = X then
FuGnl =EX) == > xif(xy) = D xifs(ed)
Xi SOO,ijOO Xi S0
If u(X,Y) = (X — ux)(Y — uy) then we have the covariance of X and Y:
Fu(, Nl = Cov(X, ) = ) (i) 0=knf (2,%))
Xj S00,y;<S00

A special case gives us the variance of X: Var(X) = Cov(X, X)



4.2 EXPECTATION OF A FUNCTION OF
CONTINUOUS RANDOM VARIABLES

Let X and Y be two continuous RVs with joint CDF Fy, and joint
probability density function fy . Let u(X,Y) be a function of these
variables. If this function satisfies a quite general condition, then u(X,Y)
Is also a random variable. Moreover,

Efu(X, )] = j j w(x,y)f (x,y) dydx

Simple examples
If u(X,Y) = X then

Pl D] = EX] =y = | | xfGoyddydx= [ xfyGo dx

Ifu(X,Y) = (X — ux)(Y — uy) then we have the covariance of X and Y:
Bl 1) = Covt, ) = [ | (= w0 = i) Goy) dyd

A special case gives us the variance of X: Var(X) = Cov(X, X) (similarly for
Y)



4.3 PROPERTIES OF THE EXPECTATION

Let X and Y be two RVs with joint CDF Fy ., then
the following hold
If Xand Y have finite expectations, then

E[aX+bY]=aE[X]+bE[Y] for any two real numbers a and
b.

If in addition X and Y are independent, then
E[XY]=E[X]E[Y]



4.4 COVARIANCE OF TWO RANDOM
VARIABLES

The covariance (ouvdlakupavon i ouvoliaoTropd) of two
RVs provides an indication of whether these variables
Increase or decrease together.

A positive covariance is an indication of such a behavior.

On the other hand, a negative covariance shows that
when the one variable increases we expect that the
other decreases.

A nonzero covariance is an indication of dependence
between the random variables because:

If X and Y are independent, then
Cov(X,Y)=0.

On the other hand, we can have two dependent RVs
with a zero covariance.



4.5 PROPERTIES OF THE COVARIANCE OF
RANDOM VARIABLES

Let X and Y be two RVs with finite variances. Then
Cov(aX,bY)=abCov(X,Y)
Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)



4.6 CORRELATION OF RANDOM VARIABLES

As we already explained, the sign of the covariance of
two RVs provides information about whether they move
together or not.

On the other hand, the magnitude of the covariance is
affected by the magnitude of the variance of each RV.

In order to identify how strong the relationship of two
variables is, we must rescale the covariance, so that it is
not affected by the scale of measurements of the two
variables.

For this purpose we use the Correlation:

Cov(X,Y)
Corr(X,Y) =
Ox Oy

where oy and oy are the standard deviations of X and Y,
respectively.




4.6 CORRELATION OF RANDOM VARIABLES
(CONTINUED)

Properties of the Correlation of two RVs, X and Y:
—1<Corr(X,Y)<1
Corr(X,X) =1= Corr(Y,Y)
Corr(X,—X) = —1
If Corr(X,Y) =1 we can be almost sure that the two
random variables coincide (X=Y almost surely)

Correlation is invariant to scaling. In other words

Corr(aX,bY)=sgn(ab)Corr(X,Y) for any two real numbers a
and b, where sgn(x) denotes the sign of the number x.

This also means that Correlation is invariant to the units
of measurement.



AZKHZH 6 (XYNEXEIA AXKHZHS 4)

2TOV TTAPOAKATW TTiVOKA avaypAa@EeTal N atro KoIvou ouvaptnon
KATAVOUNG TTIBavOTNTAC TWV TUXAiwV JETaBANTwY X Kai Y.
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(a) Na uttoAoyioeTe 10 ouvTeAeoTh) ouoXETiong Corr(X,Y).

(B) 'EoTtw n Tuxaia pyetapAnTth Z=2X+3Y . Na uttoloyioete Tn Var(Z).




4./ CONDITIONAL DISTRIBUTIONS

In many cases where we start with many random
variables, which have a joint CDF, F, we reach a point
where we know the realizations of some of the variables
while we do not know the realizations of the rest of
them. If these variables are not independent, the
Information about the new realizations may be exploited
by updating (changing) the probabilities for the events of
the “unrealized” random variables.

In the simplest case, when we have two discrete
random variables X and Y, with joint probability mass
function f, , we can directly use the definition of
conditional probability.

Specifically, the conditional probability mass function of
Y given that X=x;Is given by
fxy (%0, y;)

=) =




4.7 CONDITIONAL DISTRIBUTIONS
(CONTINUED)

In case that X and Y are both continuous RVs it can be
shown that a similar formula holds for the conditional
probability density function of Y given that X = x :

N fxy ()
frlX =x) =20

Note that x (or x; in the discrete case) must belong in the

support (ompiypa) of the RV X, which means that it
must hold fy(x) # 0 (or fx(x;) # 0 for the discrete case).

By using the conditional probability density (or mass)
function we can obtain the conditional CDF of Y as In
the case where we had one RV.




4.7 CONDITIONAL DISTRIBUTIONS
(CONTINUED)

We can use conditional distributions to identify whether
two RVs are independent or not. Specifically
If X and Y are discrete, then X and Y are independent if
fylX = x ) fr ()
for all x; in the support of X

S|m|larly, if Xand Y are contlnuous, then X and Y are
independent if

flX =x) = fy(¥)

for all X in the support of X

In order to apply the above criterion, we do not have
to calculate the conditional distributions of Y for
every value of the support of X. We obtain the
formula of f(y;|X = le (or f(y|X = x)) maintaining
the notation x; (or x). If x; (or x) does not appear in
the derived dlstrlbutlon then the two RVs are
Independent.



4.8 CONDITIONAL MOMENTS

Using the conditional distribution of Y we can derive its
Conditional Expectation given a value of X. Specifically,
we have

E[Y|X =x;] = Zyjsoo vif (vj|X = x;) for the discrete
case, and

E[Y|X =x] = [ yf(y|X = x)dy for the continuous
case.

In general, if g(+) is a function which has a “good
property” (all the functions you know have it) then

ElgMIX = xi] = Xy, gj) f (vj1X = x;) for the
discrete case, and

ElgW)IX = x] = [_, g0)f (IX = x)dy for the
continuous case.



4.8 CONDITIONAL MOMENTS
(CONTINUED)

The conditional variance of Y is calculated by
iIncorporating the conditional expectation of Y
instead of its “unconditional” expectation.
Specifically

Var(Y|X = x;) = E[(Y — E[Y|X = x;])?|X = x;] for
the discrete case, and

Var(Y|X = x) = E[(Y — E[Y]|X = x])?|X = x] for the
continuous case.



AZKHZH 7 (ZYNEXEIA ASKHZEQN 4 KAI 5)

(A) ZTOV TTAPAKATW TTiVAKA avaypAa@ETal N a1ro KoIvou
ouvapTNON KATavoung moavoTnTag Twv TUXaiwv JETaAnTwyY X

Kal Y.
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Na uttoloyioeTe Tn deapeupévn auvaptnon mMOaveTNTag f(x;|Y = y;) Kai TN
deopeupévn dlakupavon Var(X|Y = 2) .

B) Av duo Tuxaiec netaBAnTEC X Kal Y £xouv wg aTrd KoIvou ouvapTtnon
TTUKVOTNTAC TTIBaVOTNTAC TRV aKOAOUON

fry = 4(X+y2)avx,y> Okatx+y <1
X 0 StaopeTikd

Na uttodoyiotei n Var(Y|X = x)



4.9 CONDITIONAL EXPECTATION AS A
RANDOM VARIABLE

In the first part of the previous problem, we had to
calculate the conditional expectation of X given that
Y=2. On the other hand, the event Y=2 occurs with a
specific probability (in fact P(Y = 2) = 0.4).
Therefore, if we do not know the realized value of Y,
there is a 40% probability that the conditional
expectation of X takes the value we have already
calculated (i.e. E[X|Y = 2]).

A similar argument concludes that with 60% probability,
the conditional expectation of X will take the value
E|X|Y = 0].
Therefore, we can expand the notion of the conditional
expectation in an “agnostic” way saying that E[X|Y] is a
random variable with
P(E|X|Y] = E[X|Y = 0])
P(EIX|Y] = E[X|Y = 2])

6 and



4.9 CONDITIONAL EXPECTATION AS A
RANDOM VARIABLE (CONTINUED)

This view of conditional expectations can be
applied to cases that involve many RVs, and of
course to the case of continuous RVSs.

Main properties of the conditional expectation
E|E[Y|X]| = E[Y] (law of iterated expectations)
E[E[g(X)Y|X]] = E[g(X)Y]

Var(Y) = E[Var(Y|X)] + var(E[Y|X])



AZKHZH 8

‘E0TW OTI N ATTO KOIVOU KATAVOMNN TWV TUXAIWV
ueTaBAnTwy X kai Y gival TETOIQ WOTE

E|X] =2

E[X?] = 16
E[Y|X] =2+ X kai
Var(Y) = 49

Na Bpebouv o1 Cov(X,Y) kal Corr(X,Y).



5.1 EKTIMHTPIEZ (EKTIMHTEZ) ESTIMATORS

Me Tov 0po «EKTIMATPIO» I «kEKTIMNNTAGY
XAPOAKTNPICOUME £€vav KOvVOVa JECW TOU OTTOIoU
XPNOIMOTTOIOVTAC TA OEQOUEVA OC KATAANYOUUE
OTNV €KTiuNON MIAg (AyvwaoTng) TTAPAUETPOU
eVOIAPEPOVTOG.

KdOe ekTipATpIa gival Tuxaia petaAntn (agou
KAOE TIMA TTOU PTTOPEI VA TTAPEI EEAPTATAI ATTO TO
ociypa)

ExTipnon (estimate r} point estimate) €ival n Tiyn
TTOU TTPOKUTTTEI ATTO TNV EQAPUOYI TOU KAVOVa
QUTOU OTO OEOOMEVA TTOU EXOUUE.



5.1 EKTIMHTPIEZ (EKTIMHTEZ) ESTIMATORS
(CONTINUED)

Mapadeiyua:
‘E0TW OTI TO AVAUEVOUEVO UWOC VoG eviiAika ‘EAANva civai u.

‘E0TW OTI yIa £€va OTTOI00NTTOTE TUXAio OEiyua peyEBoug n atrd 1o
oUVvOAO Tou evrAikou TTAnNBuopuou. Ta avTioToixa uyn Ta
oupBoAidoupe Xy, X,,...,X,. loxuel o1 E(X)= u yia KGBe | (kai ot
Var(X,)=c? yia kGBe i - utroBéTOoUE OTI 02 < ™).

H KAaoIkn ekTiuATPIa (O Kavovag dnAadr) atrd Tnv otroia Ba
TTPOKUYEI N EKTIKNON TOU u €ivai n fi = %Z?ﬂXL

NMpoooxn: 1a X;, X,...,X, eivail Tuxaieg yetaBAnTeg. Otav
TTAPOUUE £VO OUYKEKPIYEVO TUXAiO OEiyUa, TOTE
OUYKEKPIMEVOTTOIOUVTAI (TTPAYMATOTTOIOUVTAI) Ol TIUEG TOUG.
Mapadeiypa: Av diaAécoupe 7 avBpwTtToug (dnAadr n=7) ye uyn
1,57 1,82 1,65 1,78 1,62 1,77 1,68
TOTE
X;=157 X,=1,82 X,=1,65 X,=1,78 X.=1,62 X,=1,77 X,=1,68
Ms Bdaon autd 10 5£IY|.IG N EKTiKNON TOU u Eival

X; 21,70
=72



5.2 (GOOD) PROPERTIES OF ESTIMATORS

Unbiasedness (apepoAnyia):
When their expectation equals the parameter of estimation.

E() =6
In general,
bias = E(8) — 6
error of the estimator given a sample x = {X;, X,,...,X}
e(@(x)g =0(x)—0
Efficiency:

We may have under consideration a set of unbiased
estimators which all can estimate a specific parameter, 6.
Among them we want the one whose estimates are closer to
0

This is more or less equivalent to looking for the estimator
which has a minimum variance between the variances of all
the estimators within the set of estimators under
consideration



5.2 (GOOD) PROPERTIES OF ESTIMATORS
(CONTINUED)

Example of unbiased and efficient estimators

Let us return to our example of the estimation of the
mean, for a sample of size n with values of interest
denoted by X, X,,...,X, , define the set (or class), ©, of
estlmators of the form

S kEXnJ 1<Tl1<n2<'"<nk<n 1<k<n

where the parameter s represents the specific selection
among X, X,..., X, .

For every s we have
k
A 1 1 1
E(6) =1 ZX = EZ E(Xn) = 7 kit = p
= =

Therefore, all estimators in ® are unbiased



5.2 (GOOD) PROPERTIES OF ESTIMATORS
(CONTINUED)

Example of unbiased and efficient estimators
(continued)
Which is the efficient estimator within this class?

Given that we have a random sample, are observations are
independent, therefore the correlation between the X/'s is O.
We have

0.2

Var(@ ) = kzz Var(Xy,) = —ka =

Therefore the estimator with the minimum variance s the one
which corresponds to the largest k. Because the maximum
value of k is n, the efficllentnestlmator within © is

il =~ Xi
n i=1
Note that there is a lower bound beyond which it is not
possible to approximate the true parameter given a
sample of a specific finite size.



5.2 (GOOD) PROPERTIES OF ESTIMATORS
(CONTINUED)

Consistency (OUVETTEIQ)

An estimator is called consistent if it converges to the
estimated parameter (in a probabilistic way) as the
sample size increases to infinity.

Formally, let 8 be an estimator of 8 and let us denote by

6,, this estimator for a specific sample size, n. We say

that 0 is a consistent estimator of @ if for any fixed € > 0,
P(|6,—6|=¢)>0asn—



5.3 PROBABILISTIC CONVERGENCE

There are several types of convergence of random variables. We
say that the sequence of r.v’s X_ with corresponding c.d.f.s F,,
converges to the random variable X, with c.d.f. F,

almost surely (oxeddv BERaia) if s

P (hm X, = XS = 1 (we denote it as X,, — X);

in Srgogablllty (kata mOavoTtnTa) if for any fixed € > 0,
P(X,—X|=¢)—>0asn—> x

P

(we denote it as X,, — X);
in the r-th mean (ouykAion otov L"), where r > 1, if

lim E[|X, — X|] =

n—>00
(we denote it as X,, — X);
in distribution (kata vouo) if

hm E,(x) = F(x)

in every continuity pomt X, of F (we denote it as X,, —>X oras X, —>X).



5.3 PROBABILISTIC CONVERGENCE
(CONTINUED)

Remark: In the previous definitions, X may be a
constant (which can be considered as a trivial
random variable).

There is a hierarchy of convergences:
P d
If X, —=>XthenX, - X
a.s. P
If X, > Xthen X;,, - X

Lr P
IfX,—>XthenX, =X
However, there is no such a general relationship
between a.s. and L" convergences.



5.4 IMPORTANT THEOREMS

Law of large numbers (simple “weak” case) (WLLN)

Let X, X,,...,X,, ... be a sequence of independent and
identically distributed (iid) random variables with mean y and
standard deviation o < oo. Let also X,,be the average of the
first n random variables (what we have previously denoted by
f). Then

— P

X, uasn — o
Remark1: In simple cases we can prove the a.s.
convergence of X,,. We call these results: “strong” laws of
large numbers.

Remark?2: This theorem implies that when we have random
samples from the same population, fi is a consistent estimator
of u.

Remark3: The weak law of large numbers can be proved

even in cases where the random variables are not
independent. However, their dependence must be “weak”.



5.4 IMPORTANT THEOREMS (CONTINUED)

The Central Limit Theorem (CLT)

Let X, X,,...,X,, ... be a sequence of independent and
identically distributed (iid) random variables with mean u
and standard deviation g < o (again). Then

_ d
Vn(X, — 1) - N(0,0%)
Remark1: The above result is equivalent to

Jnoo_ d

- (Xn — ) > N(0,1)

Note that the limiting distribution in the right hand side is
Invariant (does not depend on any of the parameters of

the distribution of the X/'s)

Remark?2: There are many variations of CLTs that also
cover cases of “weakly” dependent random variables.



