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4.1 EXPECTATION OF A FUNCTION OF

DISCRETE RANDOM VARIABLES

 Let X and Y be two discrete RVs with joint CDF FX,Y and joint probability 

mass function fX,Y . Let u(X,Y) be a function of these variables. If this 

function satisfies a quite general condition, then u(X,Y) is also a random 

variable. Moreover,

𝐸 𝑢 𝑋, 𝑌 = ෍

𝑥𝑖 ≤∞,𝑦𝑗≤∞

𝑢 𝑥𝑖 , 𝑦𝑗 𝑓 𝑥𝑖 , 𝑦𝑗

 Simple examples

 If 𝑢 𝑋, 𝑌 = 𝑋 then 

𝐸 𝑢 𝑋, 𝑌 = 𝐸 𝑋 = 𝜇𝑋 = ෍

𝑥𝑖 ≤∞,𝑦𝑗≤∞

𝑥𝑖𝑓 𝑥𝑖 , 𝑦𝑗 = ෍

𝑥𝑖 ≤∞

𝑥𝑖𝑓𝑋 𝑥𝑖

 If 𝑢 𝑋, 𝑌 = (𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌) then we have the covariance of X and Y:

𝐸 𝑢 𝑋, 𝑌 = 𝐶𝑜𝑣(𝑋, 𝑌) = ෍

𝑥𝑖 ≤∞,𝑦𝑗≤∞

(𝑥𝑖−𝜇𝑋)(𝑦𝑗−𝜇𝑌)𝑓 𝑥𝑖 , 𝑦𝑗

 A special case gives us the variance of X: 𝑉𝑎𝑟 𝑋 = 𝐶𝑜𝑣(𝑋, 𝑋)
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4.2 EXPECTATION OF A FUNCTION OF

CONTINUOUS RANDOM VARIABLES

 Let X and Y be two continuous RVs with joint CDF FX,Y and joint 

probability density function fX,Y . Let u(X,Y) be a function of these 

variables. If this function satisfies a quite general condition, then u(X,Y) 

is also a random variable. Moreover,

𝐸 𝑢 𝑋, 𝑌 = න
−∞

∞

න
−∞

∞

𝑢 𝑥, 𝑦 𝑓 𝑥, 𝑦 𝑑𝑦𝑑𝑥

 Simple examples

 If 𝑢 𝑋, 𝑌 = 𝑋 then 

𝐸 𝑢 𝑋, 𝑌 = 𝐸 𝑋 = 𝜇𝑋 = න
−∞

∞

න
−∞

∞

𝑥𝑓 𝑥, 𝑦 𝑑𝑦𝑑𝑥 = න
−∞

∞

𝑥𝑓𝑋 𝑥 𝑑𝑥

 If 𝑢 𝑋, 𝑌 = (𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌) then we have the covariance of X and Y:

𝐸 𝑢 𝑋, 𝑌 = 𝐶𝑜𝑣(𝑋, 𝑌) = න
−∞

∞

න
−∞

∞

(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)𝑓 𝑥, 𝑦 𝑑𝑦𝑑𝑥

 A special case gives us the variance of X: 𝑉𝑎𝑟 𝑋 = 𝐶𝑜𝑣(𝑋, 𝑋) (similarly for 

Y)
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4.3 PROPERTIES OF THE EXPECTATION

 Let X and Y be two RVs with joint CDF FX,Y , then 

the following hold

 If X and Y have finite expectations, then

 E[aX+bY]=aE[X]+bE[Y] for any two real numbers a and 

b.

 If in addition X and Y are independent, then

 E[XY]=E[X]E[Y]
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4.4 COVARIANCE OF TWO RANDOM

VARIABLES

 The covariance (συνδιακύμανση ή συνδιασπορά) of two 
RVs provides an indication of whether these variables 
increase or decrease together.

 A positive covariance is an indication of such a behavior. 

 On the other hand, a negative covariance shows that 
when the one variable increases we expect that the 
other decreases.

 A nonzero covariance is an indication of dependence 
between the random variables because:

 If X and Y are independent, then 
Cov(X,Y)=0.

 On the other hand, we can have two dependent RVs 
with a zero covariance.
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4.5 PROPERTIES OF THE COVARIANCE OF

RANDOM VARIABLES

 Let X and Y be two RVs with finite variances. Then

 Cov(aX,bY)=abCov(X,Y)

 Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)

6



4.6 CORRELATION OF RANDOM VARIABLES

 As we already explained, the sign of the covariance of
two RVs provides information about whether they move
together or not.

 On the other hand, the magnitude of the covariance is
affected by the magnitude of the variance of each RV.

 In order to identify how strong the relationship of two
variables is, we must rescale the covariance, so that it is
not affected by the scale of measurements of the two
variables.

 For this purpose we use the Correlation:

𝐶𝑜𝑟𝑟 𝑋, 𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
where 𝜎𝑋 and 𝜎𝑌 are the standard deviations of X and Y, 
respectively. 7



4.6 CORRELATION OF RANDOM VARIABLES

(CONTINUED)

 Properties of the Correlation of two RVs, X and Y:

 −1 ≤ 𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≤ 1

 𝐶𝑜𝑟𝑟 𝑋, 𝑋 = 1 = 𝐶𝑜𝑟𝑟 𝑌, 𝑌

 𝐶𝑜𝑟𝑟 𝑋,−𝑋 = −1

 If 𝐶𝑜𝑟𝑟 𝑋, 𝑌 = 1 we can be almost sure that the two

random variables coincide (X=Y almost surely)

 Correlation is invariant to scaling. In other words

 𝐶𝑜𝑟𝑟 𝑎𝑋, 𝑏𝑌 =𝑠𝑔𝑛(𝑎𝑏)𝐶𝑜𝑟𝑟 𝑋, 𝑌 for any two real numbers a

and b, where 𝑠𝑔𝑛(x) denotes the sign of the number x.

 This also means that Correlation is invariant to the units

of measurement.
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ΑΣΚΗΣΗ 6 (ΣΥΝΕΧΕΙΑ ΑΣΚΗΣΗΣ 4)

9

Στον παρακάτω πίνακα αναγράφεται η από κοινού συνάρτηση 
κατανομής πιθανότητας των τυχαίων μεταβλητών Χ και Υ.

y                         x 0 1 2 

0 0.2 0.2 0.2 

2 0.1 0.1 0.2 

 

(α) Να υπολογίσετε το συντελεστή συσχέτισης Corr(X,Y).

(β) Έστω η τυχαία μεταβλητή Ζ=2Χ+3Υ . Να υπολογίσετε τη Var(Z).



4.7 CONDITIONAL DISTRIBUTIONS

 In many cases where we start with many random
variables, which have a joint CDF, F, we reach a point
where we know the realizations of some of the variables
while we do not know the realizations of the rest of
them. If these variables are not independent, the
information about the new realizations may be exploited
by updating (changing) the probabilities for the events of
the “unrealized” random variables.

 In the simplest case, when we have two discrete 
random variables X and Y, with joint probability mass 
function fX,Y,  we can directly use the definition of 
conditional probability.

 Specifically, the conditional probability mass function of 
Y given that X=xi is given by

𝑓𝑌 𝑦𝑗 𝑋 = 𝑥𝑖 =
𝑓𝑋,𝑌(𝑥𝑖 , 𝑦𝑗)

𝑓𝑋(𝑥𝑖) 10



4.7 CONDITIONAL DISTRIBUTIONS

(CONTINUED)

 In case that X and Y are both continuous RVs it can be

shown that a similar formula holds for the conditional

probability density function of Y given that X = x :

𝑓𝑌 𝑦 𝑋 = 𝑥 =
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋(𝑥)

 Note that x (or xi in the discrete case) must belong in the

support (στήριγμα) of the RV X, which means that it

must hold 𝑓𝑋(𝑥) ≠ 0 (or 𝑓𝑋(𝑥𝑖) ≠ 0 for the discrete case).

 By using the conditional probability density (or mass)

function we can obtain the conditional CDF of Y as in

the case where we had one RV.
11



4.7 CONDITIONAL DISTRIBUTIONS

(CONTINUED)

 We can use conditional distributions to identify whether 
two RVs are independent or not. Specifically
 If X and Y are discrete, then X and Y are independent if 

𝑓 𝑦𝑗 𝑋 = 𝑥𝑖 = 𝑓𝑌 𝑦𝑗
for all xi in the support of X.

 Similarly, if X and Y are continuous, then X and Y are 
independent if

𝑓 𝑦 𝑋 = 𝑥 = 𝑓𝑌 𝑦
for all x in the support of X.

 In order to apply the above criterion, we do not have 
to calculate the conditional distributions of Y for 
every value of the support of X. We obtain the 
formula of 𝑓 𝑦𝑗 𝑋 = 𝑥𝑖 (or 𝑓 𝑦 𝑋 = 𝑥 ) maintaining 
the notation 𝑥𝑖 (or x). If 𝑥𝑖 (or x) does not appear in 
the derived distribution, then the two RVs are 
independent.
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4.8 CONDITIONAL MOMENTS

 Using the conditional distribution of Y we can derive its 

Conditional Expectation given a value of X. Specifically, 

we have

𝐸 𝑌 𝑋 = 𝑥𝑖 = σ𝑦𝑗≤∞𝑦𝑗𝑓(𝑦𝑗|𝑋 = 𝑥𝑖) for the discrete 

case, and

𝐸 𝑌 𝑋 = 𝑥 = ∞−׬
∞

𝑦𝑓 𝑦 𝑋 = 𝑥 𝑑𝑦 for the continuous 

case.

 In general, if 𝑔(∙) is a function which has a “good 

property” (all the functions you know have it) then 

𝐸 𝑔(𝑌) 𝑋 = 𝑥𝑖 = σ𝑦𝑗≤∞𝑔(𝑦𝑗)𝑓(𝑦𝑗|𝑋 = 𝑥𝑖) for the 

discrete case, and

𝐸 𝑔(𝑌) 𝑋 = 𝑥 = ∞−׬
∞

𝑔(𝑦)𝑓 𝑦 𝑋 = 𝑥 𝑑𝑦 for the 

continuous case.
13



4.8 CONDITIONAL MOMENTS

(CONTINUED)

 The conditional variance of Y is calculated by 

incorporating the conditional expectation of Y 

instead of its “unconditional” expectation. 

Specifically

𝑉𝑎𝑟 𝑌 𝑋 = 𝑥𝑖 = 𝐸 (𝑌 − 𝐸 𝑌 𝑋 = 𝑥𝑖 )
2|𝑋 = 𝑥𝑖 for 

the discrete case, and

𝑉𝑎𝑟 𝑌 𝑋 = 𝑥 = 𝐸 (𝑌 − 𝐸 𝑌 𝑋 = 𝑥 )2|𝑋 = 𝑥 for the 

continuous case.
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ΑΣΚΗΣΗ 7 (ΣΥΝΕΧΕΙΑ ΑΣΚΗΣΕΩΝ 4 KAI 5)

15

(A) Στον παρακάτω πίνακα αναγράφεται η από κοινού 
συνάρτηση κατανομής πιθανότητας των τυχαίων μεταβλητών Χ
και Υ.

y                         x 0 1 2 

0 0.2 0.2 0.2 

2 0.1 0.1 0.2 

 

Να υπολογίσετε τη δεσμευμένη συνάρτηση πιθανότητας 𝑓(𝑥𝑖|𝑌 = 𝑦𝑗) και τη 

δεσμευμένη διακύμανση 𝑉𝑎𝑟(𝑋|𝑌 = 2) .

Β) Αν δύο τυχαίες μεταβλητές Χ και Υ έχουν ως από κοινού συνάρτηση 

πυκνότητας πιθανότητας την ακόλουθη

𝑓𝑋,𝑌 = ቊ
4 𝑥 + 𝑦2 αν 𝑥, 𝑦 > 0 και 𝑥 + 𝑦 ≤ 1

0 διαφορετικά

Να υπολογιστεί η 𝑉𝑎𝑟(𝑌|𝑋 = 𝑥)



4.9 CONDITIONAL EXPECTATION AS A

RANDOM VARIABLE

 In the first part of the previous problem, we had to 
calculate the conditional expectation of X given that 
Y=2. On the other hand, the event Y=2 occurs with a 
specific probability (in fact 𝑃 𝑌 = 2 = 0.4).

 Therefore, if we do not know the realized value of Y, 
there is a 40% probability that the conditional 
expectation of X takes the value we have already 
calculated (i.e. 𝐸[𝑋|𝑌 = 2]).

 A similar argument concludes that with 60% probability, 
the conditional expectation of X will take the value 
𝐸[𝑋|𝑌 = 0].

 Therefore, we can expand the notion of the conditional 
expectation in an “agnostic” way saying that 𝐸[𝑋|𝑌] is a 
random variable with

𝑃 𝐸 𝑋 𝑌 = 𝐸 𝑋 𝑌 = 0 = 0.6 and
𝑃 𝐸 𝑋 𝑌 = 𝐸 𝑋 𝑌 = 2 = 0.4 16



4.9 CONDITIONAL EXPECTATION AS A

RANDOM VARIABLE (CONTINUED)

 This view of conditional expectations can be 

applied to cases that involve many RVs, and of 

course to the case of continuous RVs.

 Main properties of the conditional expectation

 𝐸 𝐸 𝑌 𝑋 = 𝐸[𝑌] (law of iterated expectations)

 𝐸[𝐸 𝑔 𝑋 𝑌 𝑋 ] = 𝐸[𝑔 𝑋 𝑌]

 𝑉𝑎𝑟 𝑌 = 𝐸 𝑉𝑎𝑟 𝑌 𝑋 + 𝑣𝑎𝑟(𝐸 𝑌 𝑋 )

17



ΑΣΚΗΣΗ 8

 Έστω ότι η από κοινού κατανομή των τυχαίων 

μεταβλητών Χ και Υ είναι τέτοια ώστε

 𝐸 𝑋 = 2

 𝐸 𝑋2 = 16

 𝐸 𝑌 𝑋 = 2 + 𝑋 και

 𝑉𝑎𝑟 𝑌 = 49

Να βρεθούν οι 𝐶𝑜𝑣(𝑋, 𝑌) και 𝐶𝑜𝑟𝑟(𝑋, 𝑌).

18



5.1 ΕΚΤΙΜΗΤΡΙΕΣ (ΕΚΤΙΜΗΤΕΣ) ESTIMATORS

 Με τον όρο «Εκτιμήτρια» ή «Εκτιμητής» 

χαρακτηρίζουμε έναν κανόνα μέσω του οποίου 

χρησιμοποιόντας τα δεδομένα μας καταλήγουμε 

στην εκτίμηση μιας (άγνωστης) παραμέτρου 

ενδιαφέροντος.

 Κάθε εκτιμήτρια είναι τυχαία μεταβλητή (αφού 

κάθε τιμή που μπορεί να πάρει εξαρτάται από το 

δείγμα)

 Εκτίμηση (estimate ή point estimate) είναι η τιμή 

που προκύπτει από την εφαρμογή του κανόνα 

αυτού στα δεδομένα που έχουμε.
19



5.1 ΕΚΤΙΜΗΤΡΙΕΣ (ΕΚΤΙΜΗΤΕΣ) ESTIMATORS

(CONTINUED)

 Παράδειγμα:

 Έστω ότι το αναμενόμενο ύψος ενός ενήλικα Έλληνα είναι 𝜇.

 Έστω ότι για ένα οποιοδήποτε τυχαίο δείγμα μεγέθους n από το 
σύνολο του ενήλικου πληθυσμού. Τα αντίστοιχα ύψη τα 
συμβολίζουμε Χ1, Χ2,...,Χn. Ισχύει ότι Ε(Χi)= 𝜇 για κάθε I (και ότι 
Var(Xi)=𝜎

2 για κάθε i - υποθέτουμε ότι 𝜎2 < ∞).

 Η κλασική εκτιμήτρια (ο κανόνας δηλαδή) από την οποία θα 

προκύψει η εκτίμηση του 𝜇 είναι η Ƹ𝜇 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

 Προσοχή: τα Χ1, Χ2,...,Χn είναι τυχαίες μεταβλητές. Όταν 
πάρουμε ένα συγκεκριμένο τυχαίο δείγμα, τότε 
συγκεκριμενοποιούνται (πραγματοποιούνται) οι τιμές τους.
 Παράδειγμα: Αν διαλέξουμε 7 ανθρώπους (δηλαδή n=7) με ύψη 

1,57   1,82   1,65   1,78   1,62   1,77   1,68
τότε 
Χ1= 1,57 Χ2= 1,82  Χ3= 1,65  Χ4= 1,78  Χ5= 1,62  Χ6= 1,77  Χ7= 1,68
Με βάση αυτό το δείγμα, η εκτίμηση του 𝜇 είναι 

ො𝜇 =
1

7
෍

𝑖=1

7

𝑋𝑖 ≅ 1,70 20



5.2 (GOOD) PROPERTIES OF ESTIMATORS

 Unbiasedness (αμεροληψία):
 When their expectation equals the parameter of estimation.

Ε ෠𝜃 = 𝜃
 In general, 

 bias = Ε ෠𝜃 − 𝜃
 error of the estimator given a sample x = {Χ1, Χ2,...,Χn}

𝑒 ෠𝜃(𝒙) = ෠𝜃 𝒙 − 𝜃

 Efficiency:
 We may have under consideration a set of unbiased

estimators which all can estimate a specific parameter, 𝜃. 
Among them we want the one whose estimates are closer to 
𝜃. 

 This is more or less equivalent to looking for the estimator 
which has a minimum variance between the variances of all 
the estimators within the set of estimators under 
consideration

21



5.2 (GOOD) PROPERTIES OF ESTIMATORS

(CONTINUED)

 Example of unbiased and efficient estimators

 Let us return to our example of the estimation of the 
mean, for a sample of size n with values of interest 
denoted by Χ1, Χ2,...,Χn , define the set (or class), Θ, of 
estimators of the form 

መ𝜃𝑠 =
1

𝑘
෍

𝑖=1

𝑘

𝑋𝑛𝑖 , 1 ≤ 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘 ≤ 𝑛 , 1 ≤ 𝑘 ≤ 𝑛

where the parameter s represents the specific selection 
among Χ1, Χ2,...,Χn .

 For every s we have

𝐸( መ𝜃𝑠) =
1

𝑘
𝐸 ෍

𝑖=1

𝑘

𝑋𝑛𝑖 =
1

𝑘
෍

𝑖=1

𝑘

𝐸(𝑋𝑛𝑖) =
1

𝑘
𝑘𝜇 = 𝜇

 Therefore, all estimators in Θ are unbiased 22



5.2 (GOOD) PROPERTIES OF ESTIMATORS

(CONTINUED)

 Example of unbiased and efficient estimators 
(continued)
 Which is the efficient estimator within this class?

 Given that we have a random sample, are observations are 
independent, therefore the correlation between the Xi’s is 0. 
We have

𝑉𝑎𝑟 ෠𝜃𝑠 =
1

𝑘2
෍

𝑖=1

𝑘

𝑉𝑎𝑟(𝑋𝑛𝑖) =
1

𝑘2
𝑘𝜎2 =

𝜎2

𝑘

 Therefore the estimator with the minimum variance is the one 
which corresponds to the largest 𝑘. Because the maximum 
value of 𝑘 is n, the efficient estimator within Θ is 

Ƹ𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖

 Note that there is a lower bound beyond which it is not 
possible to approximate the true parameter given a 
sample of a specific finite size.

23



5.2 (GOOD) PROPERTIES OF ESTIMATORS

(CONTINUED)

 Consistency (συνέπεια)

 An estimator is called consistent if it converges to the 

estimated parameter (in a probabilistic way) as the 

sample size increases to infinity.

 Formally, let ෠𝜃 be an estimator of 𝜃 and let us denote by 
෠𝜃𝑛 this estimator for a specific sample size, n. We say 

that ෠𝜃 is a consistent estimator of 𝜃 if for any fixed 𝜀 > 0,

𝑃 ෠𝜃𝑛 − 𝜃 ≥ 𝜀 → 0 as 𝑛 → ∞

24



5.3 PROBABILISTIC CONVERGENCE

 There are several types of convergence of random variables. We 
say that the sequence of r.v’s Xn with corresponding c.d.f.s Fn, 
converges to the random variable X, with c.d.f. F,
 almost surely (σχεδόν βέβαια) if 

𝑃 lim
𝑛→∞

𝑋𝑛 = 𝑋 = 1 (we denote it as 𝑋𝑛
𝑎.𝑠.

𝑋);

 in probability (κατά πιθανότητα) if for any fixed 𝜀 > 0,
𝑃 𝑋𝑛 − 𝑋 ≥ 𝜀 → 0 as 𝑛 → ∞

(we denote it as 𝑋𝑛→
𝑃
𝑋);

 in the r-th mean (σύγκλιση στον Lr), where 𝑟 ≥ 1, if 
lim
𝑛→∞

𝐸 𝑋𝑛 − 𝑋 𝑟 = 0

(we denote it as 𝑋𝑛→
𝐿𝑟

𝑋);

 in distribution (κατά νόμο) if 
lim
𝑛→∞

𝐹𝑛 𝑥 = 𝐹(𝑥)

in every continuity point, x, of F (we denote it as 𝑋𝑛→
𝑑
𝑋, or as 𝑋𝑛→

𝐿
𝑋).
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5.3 PROBABILISTIC CONVERGENCE

(CONTINUED)

 Remark: In the previous definitions, X may be a 

constant (which can be considered as a trivial 

random variable).

 There is a hierarchy of convergences:

 If 𝑋𝑛→
𝑃
𝑋 then 𝑋𝑛→

𝑑
𝑋

 If 𝑋𝑛
𝑎.𝑠.

𝑋 then 𝑋𝑛→
𝑃
𝑋

 If 𝑋𝑛→
𝐿𝑟

𝑋 then 𝑋𝑛→
𝑃
𝑋

 However, there is no such a general relationship 

between a.s. and 𝐿𝑟 convergences.
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5.4 IMPORTANT THEOREMS

 Law of large numbers (simple “weak” case) (WLLN)

 Let Χ1,Χ2,...,Χn,… be a sequence of independent and 
identically distributed (iid) random variables with mean 𝜇 and 
standard deviation 𝜎 < ∞. Let also ത𝑋𝑛be the average of the 
first n random variables (what we have previously denoted by 
Ƹ𝜇). Then 

ത𝑋𝑛→
𝑃
𝜇 as 𝑛 → ∞

 Remark1: In simple cases we can prove the a.s. 
convergence of ത𝑋𝑛. We call these results: “strong” laws of 
large numbers.

 Remark2: This theorem implies that when we have random 
samples from the same population, Ƹ𝜇 is a consistent estimator 
of 𝜇.

 Remark3: The weak law of large numbers can be proved 
even in cases where the random variables are not 
independent. However, their dependence must be “weak”. 27



5.4 IMPORTANT THEOREMS (CONTINUED)

 The Central Limit Theorem (CLT)

 Let Χ1,Χ2,...,Χn,… be a sequence of independent and 
identically distributed (iid) random variables with mean 𝜇
and standard deviation 𝜎 < ∞ (again). Then

𝑛( ത𝑋𝑛 − 𝜇)→
𝑑
𝑁 0, 𝜎2

 Remark1: The above result is equivalent to
𝑛

𝜎
ത𝑋𝑛 − 𝜇 →

𝑑
𝑁 0,1

Note that the limiting distribution in the right hand side is 
invariant (does not depend on any of the parameters of 
the distribution of the Xi’s)

 Remark2: There are many variations of CLTs that also 
cover cases of “weakly” dependent random variables.
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