Decision-Making Tools

PowerPoint presentation to accompany Heizer, Render, Munson
Operations Management, Twelfth Edition, Global Edition
Principles of Operations Management, Tenth Edition, Global Edition
PowerPoin

Outline

- The Decision Process in Operations
- Fundamentals of Decision Making
- Decision Tables
- Types of Decision-Making Environments
- Decision Trees

Learning Objectives

When you complete this chapter you should be able to:

A. 1 Create a simple decision tree
A. 2 Build a decision table
A. 3 Explain when to use each of the three types of decision-making environments
A. 4 Calculate an expected monetary value (EMV)

Learning Objectives

When you complete this chapter you should be able to:

A. 5 Compute the expected value of perfect information (EVPI)
A. 6 Evaluate the nodes in a decision tree
A. 7 Create a decision tree with sequential decisions

Would You Go All In

The Decision Process in Operations

1. Clearly define the problem and the factors that influence it
2. Develop specific and measurable objectives
3. Develop a model
4. Evaluate each alternative solution
5. Select the best alternative
6. Implement the decision and set a timetable for completion

Fundamentals of Decision Making

1. Terms:
a. Alternative - a course of action or strategy that may be chosen by the decision maker
b. State of nature - an occurrence or a situation over which the decision maker has little or no control

Fundamentals of Decision Making

2. Symbols used in a decision tree:
a. \square - Decision node from which one of several alternatives may be selected
b. - A state-of-nature node out of which one state of nature will occur

Decision Tree Example

Figure A. 1

Decision Table Example

TABLE A. 1	Decision Table with Conditional Values for Getz Products	
	STATES OF NATURE	
ALTERNATIVES	FAVORABLE MARKET	UNFAVORABLE MARKET
Construct large plant	$\$ 200,000$	$-\$ 180,000$
Construct small plant	$\$ 100,000$	$-\$ 20,000$
Do nothing	$\$$	0

Decision-Making Environments

-Decision making under uncertainty
-Complete uncertainty as to which state of nature may occur
Decision making under risk
-Several states of nature may occur

- Each has a probability of occurring
- Decision making under certainty
-State of nature is known

Uncertainty

1. Maximax
-Find the alternative that maximizes the maximum outcome for every alternative

- Pick the outcome with the maximum number
- Highest possible gain
- This is viewed as an optimistic decision criteria

Uncertainty

2. Maximin

-Find the alternative that maximizes the minimum outcome for every alternative

- Pick the outcome with the minimum number
- Least possible loss
- This is viewed as a pessimistic decision criteria

Uncertainty

3. Equally likely

-Find the alternative with the highest average outcome

- Pick the outcome with the maximum number
-Assumes each state of nature is equally likely to occur

Uncertainty Example

| TABLE A. 2 | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Decision Table for Decision Making Under Uncertainty

1. Maximax choice is to construct a large plant
2. Maximin choice is to do nothing
3. Equally likely choice is to construct a small plant

Decision Making Under Risk

-Each possible state of nature has an assumed probability
-States of nature are mutually exclusive
-Probabilities must sum to 1

- Determine the expected monetary value (EMV) for each alternative

Expected Monetary Value

EMV (Alternative $i)=\left(\right.$ Payoff of $1^{\text {st }}$ state of nature) x (Probability of $1^{\text {st }}$ state of nature)

+ (Payoff of $2^{\text {nd }}$ state of nature) x (Probability of $2^{\text {nd }}$ state of nature)
$+\ldots+\underset{ }{ } \begin{aligned} & \text { (Payoff of last state of } \\ & \text { nature) } \times \text { (Probability of } \\ & \text { last state of nature) }\end{aligned}$

EMV Example

ALTERNATIVES	FAVORABLE MARKET	UNFAVORABLE MARKET
Construct large plant (A_{1})	\$200,000	-\$180,000
Construct small plant (A_{2})	\$100,000	-\$ 20,000
Do nothing (A_{3})	\$ 0	\$ 0
Probabilities	0.6	0.4

1. $\operatorname{EMV}\left(A_{1}\right)=(.6)(\$ 200,000)+(.4)(-\$ 180,000)=\$ 48000$
2. $\operatorname{EMV}\left(A_{2}\right)=(.6)(\$ 100,000)+(.4)(-\$ 20,000)=\$ 52,000$
3. $\operatorname{EMV}\left(A_{3}\right)=(.6)(\$ 0)+(.4)(\$ 0)=\$ 0$

Best Option

Decision Making Under Certainty

- Is the cost of perfect information worth it?
- Determine the expected value of perfect information (EVPI)

Expected Value of Perfect Information

EVPI is the difference between the payoff under certainty and the payoff under risk

Expected value $\mathrm{EVPI}=$ with perfect $-\underset{\text { EMV }}{\text { Maximum }}$

Expected value with $=$ (Best outcome or consequence for $1^{\text {st }}$ state perfect information (EVwPI) of nature) \times (Probability of $1^{\text {st }}$ state of nature)

+ Best outcome for $2^{\text {nd }}$ state of nature)
x (Probability of $2^{\text {nd }}$ state of nature)
+ ... + Best outcome for last state of nature)
x (Probability of last state of nature)

EVPI Example

1. The best outcome for the state of nature "favorable market" is "build a large facility" with a payoff of $\$ 200,000$. The best outcome for "unfavorable" is "do nothing" with a payoff of $\$ 0$.

Expected value with perfect $=(\$ 200,000)(.6)+(\$ 0)(.4)=\$ 120,000$ information

EVPI Example

2. The maximum EMV is $\$ 52,000$, which is the expected outcome without perfect information. Thus:

$$
\begin{aligned}
\text { EVPI } & =\text { EVwPI }-\underset{\text { EMV }}{\text { Maximum }} \\
& =\$ 120,000-\$ 52,000=\$ 68,000
\end{aligned}
$$

The most the company should pay for perfect information is $\$ 68,000$

Decision Trees

- Information in decision tables can be displayed as decision trees
- A decision tree is a graphic display of the decision process that indicates decision alternatives, states of nature and their respective probabilities, and payoffs for each combination of decision alternative and state of nature
- Appropriate for showing sequential decisions

Decision Trees

Decision Trees

1. Define the problem
2. Structure or draw the decision tree
3. Assign probabilities to the states of nature
4. Estimate payoffs for each possible combination of decision alternatives and states of nature
5. Solve the problem by working backward through the tree computing the EMV for each state-of-nature node

Decision Tree Example

Figure A. 2

Complex Decision Tree

 Example

 Example}

Figure A. 3

Complex Example

1. Given favorable survey results
$\operatorname{EMV}(2)=(.78)(\$ 190,000)+(.22)(-\$ 190,000)=\$ 106,400$
$\operatorname{EMV}(3)=(.78)(\$ 90,000)+(.22)(-\$ 30,000)=\$ 63,600$

The EMV for no plant $=-\$ 10,000$ so, if the survey results are favorable, build the large plant

Complex Example

2. Given negative survey results
$\operatorname{EMV}(4)=(.27)(\$ 190,000)+(.73)(-\$ 190,000)=-\$ 87,400$
$\operatorname{EMV}(5)=(.27)(\$ 90,000)+(.73)(-\$ 30,000)=\$ 2,400$

The EMV for no plant $=-\$ 10,000$ so, if the survey results are negative, build the small plant

Complex Example

3. Compute the expected value of the market survey
$\operatorname{EMV}(1)=(.45)(\$ 106,400)+(.55)(\$ 2,400)=\$ 49,200$
4. If the market survey is not conducted
$\operatorname{EMV}(6)=(.6)(\$ 200,000)+(.4)(-\$ 180,000)=\$ 48,000$
$\operatorname{EMV}(7)=(.6)(\$ 100,000)+(.4)(-\$ 20,000)=\$ 52,000$
The EMV for no plant = \$0 so, given no survey, build the small plant

Complex Example

5. The expected monetary value of not conducting the survey is $\$ 52,000$ and the EMV for conducting the study is $\$ 49,200$

The best choice is to not seek marketing information and build the small plant

The Poker Design Process

If T. J. folds,
EMV $=(.80)(\$ 99,000)$
$=\$ 79,200$
If T. J. calls, The chance T.J. will call
EMV $=.20[(.45)(\$ 853,000)-$ Phillips's bet of $\$ 422,000]$
$=.20[\$ 383,850-\$ 422,000]$
$=.20[-\$ 38,150]=-\$ 7,630$
Overall EMV $=\$ 79,200-\$ 7,630=\$ 71,750$

The Poker Design Process

If T. J. folds

 decision were to be mad large. Even though average payoff would be instance did not work out, Phillips's decision in this ine was the correct one. his analysis and pron$$
\begin{aligned}
& .0[\$ 383,850-\$ 422,000] \\
=. & .20[-\$ 38,150]=-\$ 7,630
\end{aligned}
$$

Overall EMV = \$79,200 - \$7,630 = \$71,750

