Sustainability in the Supply Chain

PowerPoint presentation to accompany Heizer, Render, Munson Operations Management, Twelfth Edition, Global Edition Principles of Operations Management, Tenth Edition, Global Edition

1 3 0 3 4 3 B

PowerPoint slides by Jeff Heyl

Copyright © 2017 Pearson Education, Ltd.

LEME

Outline

- Corporate Social Responsibility
- Sustainability
- Design and Production for Sustainability
- Regulations and Industry Standards

Learning Objectives

When you complete this chapter you should be able to :

- **S5.1** *Describe* corporate social responsibility
- **S5.2** *Describe* sustainability
- **S5.3** *Explain* the 3*R*s for sustainability
- **S5.4** *Calculate* design for disassembly
- **S5.5** *Explain* the impact of sustainable regulations on operations

Corporate Social Responsibility

- How products and services affect people and the environment
- Stakeholders have strong opinions about environmental, social, and ethical issues
- Doing what's right can be beneficial to all stakeholders

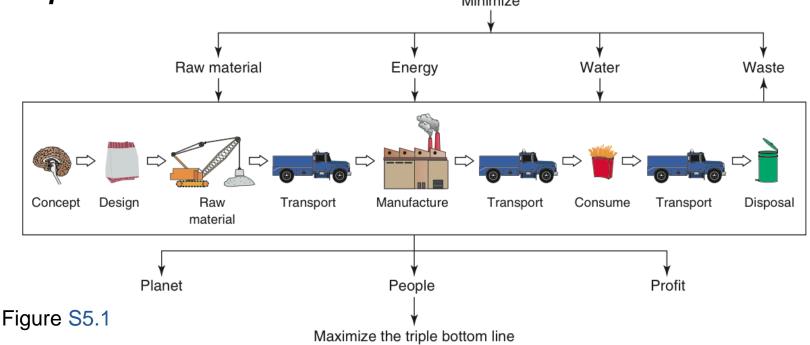
Corporate social responsibility (CSR)

Sustainability

Meeting the needs of the present without compromising the ability of future generations to meet their needs

- More than "going green"
- Includes employees, customers, community, and company reputation

Systems View


- Looking at a product's life from design to disposal, including all the resources required
- The product or service itself is a small part of much larger social, economic, and environmental systems
- Understanding systems allows more informed judgments regarding sustainability

Commons

- Many inputs to a production system held by the public
- Common resources often misallocated
- Possible solutions include
 - 1) Moving some of the *common* to private property
 - 2) Allocation of rights
 - 3) Allocation of yield

Triple Bottom Line

Consider the systems necessary to support the three Ps: people, planet, and profit

Triple Bottom Line

- Decisions affect people
- Globalization and outsourcing complicate the task
- Supplier selection and performance criteria are important
- Materials must be safe and environmentally responsible

Walmart's Objectives

- Improving livelihoods through the creation of productive, healthy, and safe workplaces
- 2. Building strong communities through access to affordable, high-quality services
- 3. Preventing exposure to substances that are considered harmful or toxic
- 4. Promoting health and wellness

Triple Bottom Line

- The planet's environment
- Look for ways to reduce the environmental impact of operations
- Overarching objective is to conserve scarce resources
- Carbon footprint and greenhouse gas emissions (GHG)

Carbon Footprint

-1807	Total carbon footprint	75 g
	Farming ∳	44%
	Manufacture	30%
	¥	
CHIPS	Packaging	15%
	¥	
	Shipping	9%
	¥	
	Disposal	2%

Figure S5.2

34.5-gram Bag of Frito-Lay Chips

Triple Bottom Line

- Social and environmental sustainability do not exist without economic sustainability
- Staying in business requires making a profit
- Alternate measures of success include risk profile, intellectual property, employee morale, and company valuation

Social accounting can supplement financial accounting to support economic sustainability

Design and Production for Sustainability

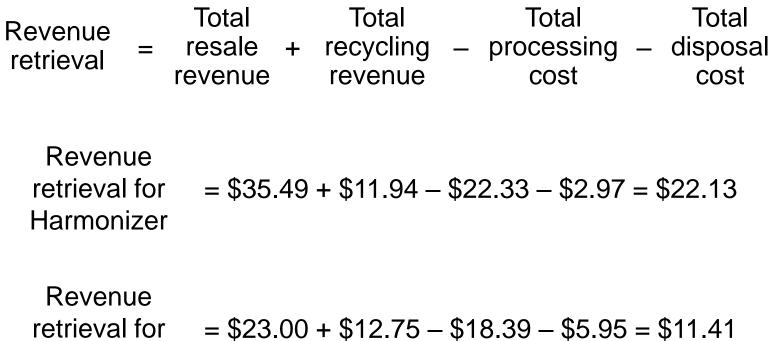
- Life cycle assessment valuates the environmental impact of a product, from raw material and energy inputs all the way to the disposal of the product at its end-of-life
- The goal is to make decisions that help reduce the environmental impact of a product throughout its entire life
- ▶ The 3*R*s— *reduce, reuse,* and *recycle*

Product Design

- Design decisions affect materials, quality, cost, processes, related packaging and logistics, and how the product will be processed when discarded
- Incorporate systems view to lower environmental impact
- Alternative materials

Design for Disassembly

Harmonizer


PART	RESALE REVENUE PER UNIT	RECYCLING REVENUE PER UNIT	PROCESSING COST PER UNIT	DISPOSAL COST PER UNIT
Printed circuit board	\$5.93	\$1.54	\$3.46	\$0.00
Laminate back	0.00	0.00	4.53	1.74
Coil	8.56	5.65	6.22	0.00
Processor	9.17	2.65	3.12	0.00
Frame	0.00	0.00	2.02	1.23
Aluminum case	11.83	2.10	2.98	0.00
Total	\$35.49	\$11.94	\$22.33	\$2.97

Design for Disassembly

Rocker

PART	RESALE REVENUE PER UNIT	RECYCLING REVENUE PER UNIT	PROCESSING COST PER UNIT	DISPOSAL COST PER UNIT
Printed circuit board	\$7.88	\$3.54	\$2.12	\$0.00
Coil	6.67	4.56	3.32	0.00
Frame	0.00	0.00	4.87	1.97
Processor	8.45	4.65	3.43	0.00
Plastic case	0.00	0.00	4.65	3.98
Total	\$23.00	\$12.75	\$18.39	\$5.95

Design for Disassembly

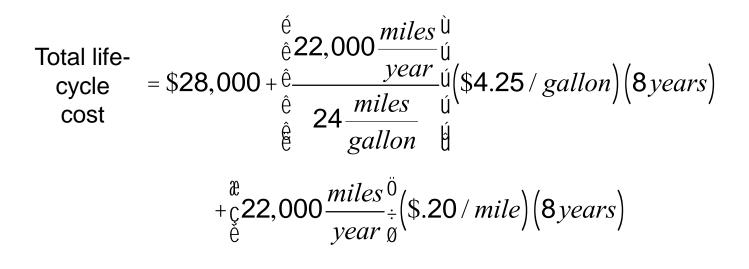
Rocker $= \frac{1}{2}23.00 + \frac{1}{2}12.73 - \frac{1}{2}10.03 - \frac{1}{2}3.00 - \frac{1}{2}11.$

Production Process

- Reduce the amount of resources in the production process
 - Energy
 - Water
 - Environmental contamination
- Reduce cost and environmental concerns

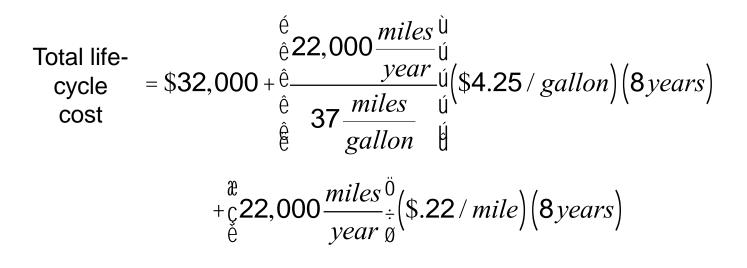
Logistics

- Reduce costs by achieving efficient route and delivery networks
 - 1. Getting shipments to customers promptly
 - 2. Keeping trucks busy
 - 3. Buying inexpensive fuel



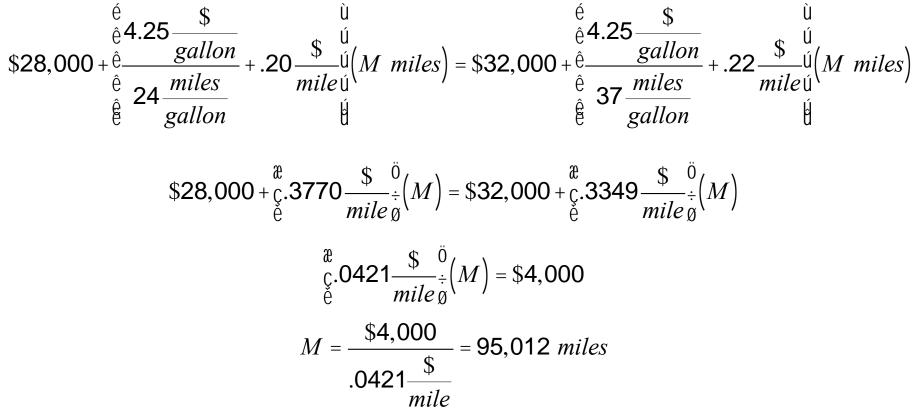
Logistics

Management analytics can help
Evaluate equipment alternatives
Life cycle ownership costs


VEHICLE	COST TO BUY	FUEL	EFFICIENCY	OPERATING COSTS PER MILE
Ford TriVan	\$28,000	Regular Unleaded	24 mpg	\$.20
Honda CityVan	\$32,000	Regular Unleaded/Battery	37 mpg	\$.22
Annual distance = 22,000 miles Life = 8 years Gas price = \$4.25/gallon				

a) Ford TriVan

= \$28,000 + \$31,167 + \$35,200 = \$94,367


a) Honda CityVan

= 32,000 + 20,216 + 38,720 = 90,936

b) Crossover point

Total cost for Ford TriVan = Total cost for Honda CityVan

c) Crossover point

Crossover point =
$$\frac{95,012 \text{ miles}}{22,000 \frac{\text{miles}}{\text{year}}} = 4.32 \text{ years}$$

End-of-Life Phase

- What happens at the end-of-life stage?
- Closed-loop supply chains or reverse logistics

Automaker's design incorporates disassembly, recycling, and reuse

- Product design
 - Food and Drug Administration
 - Consumer Products Safety Commission
 - National Highway Safety Administration

- Manufacturing and assembly activities
 - Occupational Safety and Health Administration (OSHA)
 - Environmental Protection Agency (EPA)
 - State and local agencies

- Disassembly and disposal of hazardous products
 - EPA
 - Department of Transportation
- Design for disassembly

- Nearly all industries have regulations
 - Commercial builders
 - Federal Safe Drinking Water Act
 - Resource Conservation and Recovery Act

International Environmental Policies and Standards

- Organizations and governments guiding businesses
 - U.N. Framework Convention on Climate Change (UNFCCC)
 - International Organization for Standardization (ISO)
 - Elimination of greenhouse gas (GHG)

European Union Emissions Trading System

To combat climate change
Reduce industrial GHG emissions
"Cap-and-trade" principle

- Environmental management standards
 - 1) Environmental management
 - 2) Auditing
 - 3) Performance evaluation
 - 4) Labeling
 - 5) Life cycle assessment

Advantages

- Positive public image, reduced liability
- Good systematic approach to pollution prevention
- Compliance with regulatory requirements, opportunities for competitive advantage
- Reduction in the need for multiple audits

- Implemented by more than 200,000 organizations in 155 countries
- Environmental and economic benefits
 - Reduced materials/resource usage
 - Reduced energy consumption
 - Lower distribution costs
 - Improved image
 - Improved process efficiency
 - Reduced waste and disposal costs

- ISO 14001 addresses environmental management systems
- Guidance to minimize harmful effects on the environment