CHAPTER 10
 Game Theory and Strategic Behavior

Strategic Behavior

- Decisions that take into account the predicted reactions of rival firms
- Interdependence of outcomes
- Game Theory
- Players
- Strategies
- Payoff matrix

Strategic Behavior

- Types of Games
- Zero-sum games
- Nonzero-sum games
- Nash Equilibrium
- Each player chooses a strategy that is optimal given the strategy of the other player
- A strategy is dominant if it is optimal regardless of what the other player does

TABLE 10-1	Payoff Matrix for an Advertising Game		
	Firm B		
	Advertise	Don't Advertise	
Firm A	Advertise	$(4,3)$	$(5,1)$
	Don't Advertise	$(2,5)$	$(3,2)$

Advertising Example 1

Advertising Example 1

What is the optimal strategy for Firm A if Firm B chooses to advertise?

Advertising Example 1

What is the optimal strategy for Firm A if Firm B chooses to advertise?

If Firm A chooses to advertise, the payoff is 4. Otherwise, the payoff is 2 . The optimal strategy is to advertise.

Advertising Example 1

What is the optimal strategy for Firm A if Firm B chooses not to advertise?

Advertising Example 1

What is the optimal strategy for Firm A if Firm B chooses not to advertise?

If Firm A chooses to advertise, the payoff is 5. Otherwise, the payoff is 3 . Again, the optimal strategy is to advertise.

Advertising Example 1

Regardless of what Firm B decides to do, the optimal strategy for Firm A is to advertise. The dominant strategy for Firm A is to advertise.

Advertising Example 1

What is the optimal strategy for Firm B if Firm A chooses to advertise?

Advertising Example 1

What is the optimal strategy for Firm B if Firm A chooses to advertise?

If Firm B chooses to advertise, the payoff is 3 . Otherwise, the payoff is 1 . The optimal strategy is to advertise.

Advertising Example 1

What is the optimal strategy for Firm B if Firm A chooses not to advertise?

Advertising Example 1

What is the optimal strategy for Firm B if Firm A chooses not to advertise?

If Firm B chooses to advertise, the payoff is 5 . Otherwise, the payoff is 2 . Again, the optimal strategy is to advertise.

Advertising Example 1

Regardless of what Firm A decides to do, the optimal strategy for Firm B is to advertise. The dominant strategy for Firm B is to advertise.

Advertising Example 1

The dominant strategy for Firm A is to advertise and the dominant strategy for Firm B is to advertise. The Nash equilibrium is for both firms to advertise.

TABLE 10-2	Payoff Matrix for the Advertising Game		
	Firm B		
Firm A	Advertise	Don't Advertise	
	Advertise	$(4,3)$	
	Don't Advertise	$(2,5)$	

Advertising Example 2

Advertising Example 2

What is the optimal strategy for Firm A if Firm B chooses to advertise?

Advertising Example 2

What is the optimal strategy for Firm A if Firm B chooses to advertise?

If Firm A chooses to advertise, the payoff is 4. Otherwise, the payoff is 2 . The optimal strategy is to advertise.

Advertising Example 2

What is the optimal strategy for Firm A if Firm B chooses not to advertise?

Advertising Example 2

What is the optimal strategy for Firm A if Firm B chooses not to advertise?

If Firm A chooses to advertise, the payoff is 5. Otherwise, the payoff is 6 . In this case, the optimal strategy is not to advertise.

Advertising Example 2

The optimal strategy for Firm A depends on which strategy is chosen by Firms B. Firm A does not have a dominant strategy.

Advertising Example 2

What is the optimal strategy for Firm B if Firm A chooses to advertise?

Advertising Example 2

What is the optimal strategy for Firm B if Firm A chooses to advertise?

If Firm B chooses to advertise, the payoff is 3 . Otherwise, the payoff is 1 . The optimal strategy is to advertise.

Advertising Example 2

What is the optimal strategy for Firm B if Firm A chooses not to advertise?

Advertising Example 2

What is the optimal strategy for Firm B if Firm A chooses not to advertise?

If Firm B chooses to advertise, the payoff is 5 . Otherwise, the payoff is 2 . Again, the optimal strategy is to advertise.

Advertising Example 2

Regardless of what Firm A decides to do, the optimal strategy for Firm B is to advertise. The dominant strategy for Firm B is to advertise.

Advertising Example 2

The dominant strategy for Firm B is to advertise. If Firm B chooses to advertise, then the optimal strategy for Firm A is to advertise. The Nash equilibrium is for both firms to advertise.

Prisoners' Dilemma

Two suspects are arrested for armed robbery. They are immediately separated. If convicted, they will get a term of 10 years in prison. However, the evidence is not sufficient to convict them of more than the crime of possessing stolen goods, which carries a sentence of only 1 year.

The suspects are told the following: If you confess and your accomplice does not, you will go free. If you do not confess and your accomplice does, you will get 10 years in prison. If you both confess, you will both get 5 years in prison.

TABLE 10-3	Negative Payoff Matrix (Years of Detention) for Suspect A and Suspect B		
		Individual B	
		Confess	Don't Confess
	Confess	$(5,5)$	$(0,10)$
Individual A		$(10,0)$	$(1,1)$

Prisoners' Dilemma

Payoff Matrix (negative values)

		Individual B	
		Confess	Don't Confess
Individual A	Confess	$(5,5)$	$(0,10)$
	Don't Confess	$(10,0)$	$(1,1)$

Prisoners' Dilemma

Dominant Strategy
 Both Individuals Confess

(Nash Equilibrium)

		Individual B	
		Confess	Don't Confess
Individual A	Confess	$(5,5))$	$(0,10)$
	Don't Confess	$(10,0)$	$(1,1)$

TABLE 10-4	Payoff Matrix for a Pricing Game		
	Firm B		
	Low Price	High Price	
Firm A	Low Price	$(2,2)$	$(5,1)$
	High Price	$(1,5)$	$(3,3)$

Prisoners' Dilemma

Application: Price Competition

		Firm B	
		Low Price	High Price
Firm A	Low Price	$(2,2)$	$(5,1)$
	High Price	$(1,5)$	$(3,3)$

Prisoners' Dilemma

Application: Price Competition
Dominant Strategy: Low Price

Prisoners' Dilemma

Application: Nonprice Competition

Prisoners' Dilemma

Application: Nonprice Competition
Dominant Strategy: Advertise

		Firm B	
		Advertise	Don't Advertise
Firm A	Advertise	$(2,2))$	$(5,1)$
	Don't Advertise	$(1,5)$	$(3,3)$

Prisoners' Dilemma

Application: Cartel Cheating

Prisoners' Dilemma

Application: Cartel Cheating
Dominant Strategy: Cheat

Extensions of Game Theory

- Repeated Games
- Many consecutive moves and countermoves by each player
- Tit-for-Tat Strategy
- Do to your opponent what your opponent has just done to you

Extensions of Game Theory

- Tit-for-Tat Strategy
- Stable set of players
- Small number of players
- Easy detection of cheating
- Stable demand and cost conditions
- Game repeated a large and uncertain number of times

Extensions of Game Theory

- Threat Strategies
- Credibility
- Reputation
- Commitment
- Example: Entry deterrence

TABLE 10-5 Payoff Matrix for Pricing Game with a Threat			
	Firm B		
		Low Price	High Price
Firm A	Low Price	$(2,2)$	$(2,1)$
	High Price	$(3,4)$	$(5,3)$

TABLE 10-6	Payoff Matrix without Credible Entry Deterrence		
		Firm B	
	Enter	Do Not Enter	
	Low Price	$(4,-2)$	$(6,0)$
Firm A	High Price	$(7,2)$	$(10,0)$

TABLE 10-7	Payoff Matrix with Credible Entry Deterrence		
		Firm B	
	Enter	Do Not Enter	
Firm A	Low Price	$(4,-2)$	$(6,0)$
	High Price	$(3,2)$	$(8,0)$

Entry Deterrence

Firm B			
		Enter	Do Not Enter
Firm A			

Credible Entry Deterrence		Firm B	
		Enter	Do Not Enter
Firm A	Low Price	$(4,-2)$	$(6,0)$
	High Price	$(3,2)$	$(8,0)$

Entry Deterrence

No Credible Entry Deterrence		Firm B	
		Enter	Do Not Enter
Firm A			

Credible Entry Deterrence		Firm B	
		Enter	Do Not Enter
Firm A	Low Price	$(4,-2)$	$(6,0)$
	High Price	$(3,2)$	$(8,0)$

TABLE 10-8	Two-Firm Competition and Strategic Trade Policy		
	Airbus		
	Produce	Don't Produce	
Boeing	Produce	$(-10,-10)$	$(100,0)$
	Don't Produce	$(0,100)$	$(0,0)$

International Competition

Boeing Versus Airbus Industrie

		Airbus	
		Produce	Don't Product
Boeing	Produce	$(-10,-10)$	$(100,0)$
	Don't Produce	$(0,100)$	$(0,0)$

Sequential Games

- Sequence of moves by rivals
- Payoffs depend on entire sequence
- Decision trees
- Decision nodes
- Branches (alternatives)
- Solution by reverse induction
- From final decision to first decision

FIGURE 10-1 High-Price, Low-Price Strategy Game The strategy or highest payoff for firm A is to adopt a low-price strategy (the bottom branch node) rather than a high-price strategy (the top branch node). Given firm A's decision, firm B's best payoff is to also adopt a low-price strategy.

High-Price, Low-Price Strategy Game

Firm A Firm B

High-Price, Low-Price Strategy Game

Firm A Firm B

High-Price, Low-Price Strategy Game

Firm A Firm B

Solution: Both firms choose low price.

FIGURE 10-2 Airbus's Strategic Decision to Build the A380 and Boeing's Sonic Cruiser Response The best payoff for Airbus is to build the A380 (the top branch node) rather than not to build it (the bottom branch node). Given Airbus's decision, Boeing's best payoff is to build the sonic cruiser.

FIGURE 10-3

Airbus and Boeing

Airbus and Boeing

Airbus and Boeing

Airbus Boeing

FIGURE 10-4

