

Game Theory and Strategic Behavior

Pow erPoint Slides Prepared by Robert F. Brooker, Ph.D. Copyr

Copyright © 2007 by Oxford University Press, Inc.

Strategic Behavior

- Decisions that take into account the predicted reactions of rival firms
 Interdependence of outcomes
- Game Theory
 - Players
 - Strategies
 - Payoff matrix

Strategic Behavior

- Types of Games
 - Zero-sum games
 - Nonzero-sum games
- Nash Equilibrium
 - Each player chooses a strategy that is optimal given the strategy of the other player
 - A strategy is dominant if it is optimal regardless of what the other player does

TABLE 1	0-1 Payoff Matrix fo	Payoff Matrix for an Advertising Game	
			Firm B
		Advertise	Don't Advertise
	Advertise	(4, 3)	(5, 1)
Firm A	Don't Advertise	(2, 5)	(3, 2)

PowerPoint Slides Prepared by Robert F. Brooker, Ph.D. Copyright © 2007 by Oxford University Press, Inc.

		Firm B	
		Advertise	Don't Advertise
Firm A	Advertise	(4, 3)	(5, 1)
	Don't Advertise	(2, 5)	(3, 2)

What is the optimal strategy for Firm A if Firm B chooses to advertise?

What is the optimal strategy for Firm A if Firm B chooses to advertise?

If Firm A chooses to advertise, the payoff is 4. Otherwise, the payoff is 2. The optimal strategy is to advertise.

What is the optimal strategy for Firm A if Firm B chooses not to advertise?

What is the optimal strategy for Firm A if Firm B chooses not to advertise?

If Firm A chooses to advertise, the payoff is 5. Otherwise, the payoff is 3. Again, the optimal strategy is to advertise.

Regardless of what Firm B decides to do, the optimal strategy for Firm A is to advertise. The <u>dominant strategy</u> for Firm A is to advertise.

		Firm B	
		Advertise	Don't Advertise
Firm A	Advertise	((4, 3))	((5, 1))
	Don't Advertise	(2, 5)	(3, 2)

What is the optimal strategy for Firm B if Firm A chooses to advertise?

What is the optimal strategy for Firm B if Firm A chooses to advertise?

If Firm B chooses to advertise, the payoff is 3. Otherwise, the payoff is 1. The optimal strategy is to advertise.

What is the optimal strategy for Firm B if Firm A chooses not to advertise?

What is the optimal strategy for Firm B if Firm A chooses not to advertise?

If Firm B chooses to advertise, the payoff is 5. Otherwise, the payoff is 2. Again, the optimal strategy is to advertise.

		Firm B	
		Advertise	Don't Advertise
Firm A	Advertise	(4, 3)	(5, 1)
	Don't Advertise	((2, 5))	(3, 2)

Regardless of what Firm A decides to do, the optimal strategy for Firm B is to advertise. The <u>dominant strategy</u> for Firm B is to advertise.

The dominant strategy for Firm A is to advertise and the dominant strategy for Firm B is to advertise. The <u>Nash</u> equilibrium is for both firms to advertise.

		Firm B	
		Advertise	Don't Advertise
Eirm A	Advertise	((4, 3))	(5, 1)
	Don't Advertise	(2, 5)	(3, 2)

ame

		Firm B	
		Advertise	Don't Advertise
Eiron A	Advertise	(4, 3)	(5, 1)
FIITM A	Don't Advertise	(2, 5)	(6, 2)

		Firm B	
		Advertise	Don't Advertise
Firm A	Advertise	(4, 3)	(5, 1)
	Don't Advertise	(2, 5)	(6, 2)

What is the optimal strategy for Firm A if Firm B chooses to advertise?

What is the optimal strategy for Firm A if Firm B chooses to advertise?

If Firm A chooses to advertise, the payoff is 4. Otherwise, the payoff is 2. The optimal strategy is to advertise.

What is the optimal strategy for Firm A if Firm B chooses not to advertise?

What is the optimal strategy for Firm A if Firm B chooses not to advertise?

If Firm A chooses to advertise, the payoff is 5. Otherwise, the payoff is 6. In this case, the optimal strategy is <u>not</u> to advertise.

The optimal strategy for Firm A depends on which strategy is chosen by Firms B. Firm A does not have a dominant strategy.

What is the optimal strategy for Firm B if Firm A chooses to advertise?

What is the optimal strategy for Firm B if Firm A chooses to advertise?

If Firm B chooses to advertise, the payoff is 3. Otherwise, the payoff is 1. The optimal strategy is to advertise.

What is the optimal strategy for Firm B if Firm A chooses not to advertise?

What is the optimal strategy for Firm B if Firm A chooses not to advertise?

If Firm B chooses to advertise, the payoff is 5. Otherwise, the payoff is 2. Again, the optimal strategy is to advertise.

AdvertiseAdvertiseDon't AdvertiseFirm AAdvertise(4,3)(5,1)Don't Advertise((2,5))(6,2)			Firm B	
Firm A Advertise (4, 3) (5, 1) Don't Advertise (2, 5) (6, 2)			Advertise	Don't Advertise
Don't Advertise $(2, 5)$ $(6, 2)$	Firm A	Advertise	(4, 3)	(5, 1)
		Don't Advertise	(2, 5)	(6, 2)

Regardless of what Firm A decides to do, the optimal strategy for Firm B is to advertise. The <u>dominant strategy</u> for Firm B is to advertise.

The dominant strategy for Firm B is to advertise. If Firm B chooses to advertise, then the optimal strategy for Firm A is to advertise. The <u>Nash equilibrium</u> is for both firms to advertise.

		Firm B	
		Advertise	Don't Advertise
Firm A	Advertise	((4, 3))	(5, 1)
	Don't Advertise	(2, 5)	(3, 2)

Two suspects are arrested for armed robbery. They are immediately separated. If convicted, they will get a term of 10 years in prison. However, the evidence is not sufficient to convict them of more than the crime of possessing stolen goods, which carries a sentence of only 1 year.

The suspects are told the following: If you confess and your accomplice does not, you will go free. If you do not confess and your accomplice does, you will get 10 years in prison. If you both confess, you will both get 5 years in prison.

TABLE 10-3Negative Payoff Matrix (Years of Detention)for Suspect A and Suspect B

		Individual B	
		Confess	Don't Confess
	Confess	(5, 5)	(0, 10)
Individual A	Don't Confess	(10, 0)	(1, 1)

Payoff Matrix (negative values)

[Individual B	
		Confess	Don't Confess
Individual A	Confess	(5, 5)	(0, 10)
	Don't Confess	(10, 0)	(1, 1)

Dominant Strategy Both Individuals Confess

(Nash Equilibrium)

TABLE 10-4	Payoff Matrix for a Pricing Game		
		Firm B	
		Low Price	High Price
Firm A	Low Price	(2, 2)	(5, 1)
T IIII A	High Price	(1, 5)	(3, 3)

Application: Price Competition

Application: Price Competition

Dominant Strategy: Low Price

Application: Nonprice Competition

Application: Nonprice Competition

Dominant Strategy: Advertise

Application: Cartel Cheating

Application: Cartel Cheating

Dominant Strategy: Cheat

Extensions of Game Theory

- Repeated Games
 - Many consecutive moves and countermoves by each player
- Tit-for-Tat Strategy
 - Do to your opponent what your opponent has just done to you

Extensions of Game Theory

- Tit-for-Tat Strategy
 - Stable set of players
 - Small number of players
 - Easy detection of cheating
 - Stable demand and cost conditions
 - Game repeated a large and uncertain number of times

Extensions of Game Theory

- Threat Strategies
 - Credibility
 - Reputation
 - Commitment
 - Example: Entry deterrence

TABLE 10-5	Payoff Matrix for Pricing Game with a Threat
------------	--

		Firm B	
		Low Price	High Price
	Low Price	(2, 2)	(2, 1)
Firm A			
	High Price	(3, 4)	(5, 3)

TABLE 1	0-6 Payoff Mat Deterrence	Payoff Matrix without Credible Entry Deterrence		
		Firm B		
		Enter	Do Not Enter	
	Low Price	(4, -2)	(6, 0)	
Firm A				
	High Price	(7, 2)	(10, 0)	

TABLE 1	0-7 Payoff Mat Deterrence	Payoff Matrix with Credible Entry Deterrence		
		Firm B		
		Enter	Do Not Enter	
	Low Price	(4, -2)	(6, 0)	
Firm A	High Price	(3, 2)	(8, 0)	

Entry Deterrence

No Credible Entry Deterrence		Firm B	
		Enter	Do Not Enter
	Low Price	(4, -2)	(6, 0)
	High Price	(7, 2)	(10, 0)

Credible Entry Deterrence		Firm B	
		Enter	Do Not Enter
Firm A	Low Price	(4, -2)	(6, 0)
	High Price	(3, 2)	(8, 0)

Entry Deterrence

No Credible Entry Deterrence		Firm B	
		Enter	Do Not Enter
	Low Price	(4, -2)	(6, 0)
	High Price	((7, 2))	(10, 0)

Credible Entry Deterrence		Firm B	
		Enter	Do Not Enter
Firm A	Low Price	(4, -2)	(6, 0)
	High Price	(3, 2)	((8, 0))

TABLE 10-8 Two-Firm Competition and Strategic Trade Policy

		Airbus	
		Produce	Don't Produce
.	Produce	(-10, -10)	(100, 0)
Boeing			
	Don't Produce	(0, 100)	(0, 0)

International Competition

Boeing Versus Airbus Industrie

		Airbus	
		Produce	Don't Product
Booing	Produce	(-10, -10)	(100, 0)
Dueing	Don't Produce	(0, 100)	(0, 0)

Sequential Games

- Sequence of moves by rivals
- Payoffs depend on entire sequence
- Decision trees
 - Decision nodes
 - Branches (alternatives)
- Solution by reverse induction
 From final decision to first decision

FIGURE 10-1 High-Price, Low-Price Strategy Game The strategy or highest payoff for firm A is to adopt a low-price strategy (the bottom branch node) rather than a high-price strategy (the top branch node). Given firm A's decision, firm B's best payoff is to also adopt a low-price strategy.

High-Price, Low-Price Strategy Game

High-Price, Low-Price Strategy Game

Low Price B Low Price \$180 \$150

High Price

B

High

Solution: Both firms choose low price.

High-Price, Low-Price

Strategy Game

Firm A

\$130

Firm B

\$100

FIGURE 10-2 Airbus's Strategic Decision to Build the A380 and Boeing's Sonic Cruiser Response The best payoff for Airbus is to build the A380 (the top branch node) rather than not to build it (the bottom branch node). Given Airbus's decision, Boeing's best payoff is to build the sonic cruiser.

FIGURE 10-3

Airbus and Boeing

Airbus and Boeing

Airbus and Boeing

Solution: Airbus builds A380 and Boeing builds Sonic Cruiser.

FIGURE 10-4